Start Submission Become a Reviewer

Reading: Comment on “Computational periodicity as observed in a simple system,” by Edward N. Lorenz (...

Download

A- A+
Alt. Display

Letter to the Editor

Comment on “Computational periodicity as observed in a simple system,” by Edward N. Lorenz (2006a)

Authors:

Lun-Shin Yao ,

Mechanical and Aerospace Engineering, Arizona State University, Tempe, AR 85287–6106, US
X close

Dan Hughes

Hughes and Associates, Porter Corners, NY 12859, US
X close

Abstract

Systems of ordinary differential equations that exhibit chaotic responses have yet to be correctly integrated. So far no ‘convergent’ computational results have been determined for chaotic differential equations. Various computed numbers are not solutions of the continuous differential equations; all chaotic responses are simply numerical noise and have nothing to do with the solutions of differential equations. It would be an exciting contribution if a convergent computed chaotic solution for a Lorenz model could be obtained.

How to Cite: Yao, L.-S. and Hughes, D., 2008. Comment on “Computational periodicity as observed in a simple system,” by Edward N. Lorenz (2006a). Tellus A: Dynamic Meteorology and Oceanography, 60(4), pp.803–805. DOI: http://doi.org/10.1111/j.1600-0870.2008.00301.x
2
Views
  Published on 01 Jan 2008
 Accepted on 14 Nov 2007            Submitted on 14 Sep 2007

References

  1. Ascher , U. M. and Petzold , L. R., 1998 . Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations , Society for Industrial and Applied Mathematics , SIAM , New York .  

  2. Cloutman , L. D., 1996 . A Note on the Stability and Accuracy of Finite Difference Approximations to Differential Equations. Lawrence Liv-ermore National Laboratory, UCRL-ID-125549.  

  3. Cloutman , L. D., 1998 . Chaos and Instabilities in Finite Difference Ap-proximations to Nonlinear Differential Equations. Lawrence Liver-more National Laboratory, UCRL-ID-131333.  

  4. Lorenz , E. N., 1963 . Deterministic nonperiodic flow . J. Atmos. Sci . 20 , 130 – 141 .  

  5. Lorenz , E. N., 1990 . Can chaos and intransitivity lead to interannual variability? Tellus 42A , 378 – 389 .  

  6. Lorenz , E. N., 2006a . Computational periodicity as observed in a simple system . Tellus 58A , 549 – 557 .  

  7. Lorenz , E. N., 2006b . An attractor embedded in the atmosphere . Tellus 58A , 425 – 429 .  

  8. Pielke , R. A. and Zeng , X., 1994 . Long-term variability of climate . J. Atmos. Sci . 51 ( 1 ), 155 – 159 .  

  9. Press , W. H. , Flannery , B. P. , Teukolsky , S. A. and Vettering , W. T., 1986 . Numerical Recipes ; The Art of Scientific Computing, Cambridge University Press, Cambridge.  

  10. Teixeira , J. , Reynolds , C. A. and Judd , K., 2007 . Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design . J. Atmos. Sci . 64 , 175 – 189 .  

  11. Viana M., 2000 . What’s new on Lorenz strange attractors? Math. Intell . 22 , 6 – 19 .  

  12. Yao , L. S., 2005 . Computed chaos or numerical errors. online manuscript, http://arxiv.orgiabsinlin.CD/0506045.  

  13. Yao , L. S. and Hughes , D., 2007 . Comment on, “time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design” . J. Atmos. Sci ., 65 ( 2 ), 681 – 682 .  

  14. Young , C., 1966 . Comment on “deterministic nonperiodic flow . ” J. At-mos. Sci . 23 , 628 – 629 .  

comments powered by Disqus