Start Submission Become a Reviewer

Reading: Diagnosing the entropy budget of a climate model

Download

A- A+
Alt. Display

Original Research Papers

Diagnosing the entropy budget of a climate model

Authors:

Klaus Fraedrich ,

Meteorologisches Institut, Universität Hamburg, Bundesstr. 55, 20146 Hamburg; Max-Planck-Institut für Meteorologie, Bundesstr. 55, 20146 Hambursg, DE
X close

Frank Lunkeit

Meteorologisches Institut, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, DE
X close

Abstract

A general circulation model (GCM) of intermediate complexity (Planet Simulator) is subjected to an analysis of the entropy budget and its sensitivity. The entropy production is computed directly based on temperature and temperature tendencies and estimated indirectly based on boundary fluxes. For indirect estimates, the model shows reasonably good agreement with observations. The direct computation indicates deficits of the indirect measures, as they, for example, overestimate the material entropy production (that is, the production by turbulent fluxes). Sensitivity analyses of entropy production are provided, which, depending on changing parameters, hint to a possible applicability of maximum entropy production (MEP) under the constrained dynamics of a complex GCM.

How to Cite: Fraedrich, K. and Lunkeit, F., 2008. Diagnosing the entropy budget of a climate model. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.921–931. DOI: http://doi.org/10.1111/j.1600-0870.2008.00338.x
  Published on 01 Jan 2008
 Accepted on 14 Apr 2008            Submitted on 26 Oct 2007

References

  1. Dewar , R. 2003 . Information theory explanation of the fluctuation the-orem, maximum entropy production and self-organized criticality in non-equilibrium stationary states . J. Phys. A: Math. Gen . 36 , 631 – 641 .  

  2. Eliasen , E. , Machenhauer , B. and Rasmussen , E. 1970 . On a numeri-cal method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Report No. 2 , Inst. of Theor. Met ., Kobenhavns University , Copenhagen .  

  3. Fraedrich , K. , Kleidon , A. and Lunkeit , F. 1999 . A green planet versus a desert world: estimating the effect of vegetation extremes on the atmosphere . J. Clim . 12 , 3156 – 3163 .  

  4. Fraedrich , K. , Jansen , H. , Kirk , E. , Lulcsch , U. and Lunkeit , E 2005a. The planet simulator: towards a user friendly model. Meteoro/. Zeitschrift 14 , 299 - 304 .  

  5. Fraedrich , K. , Jansen , H. , Kirk , E. and Lunkeit , F. 2005b . The planet simulator: green planet and desert world . Meteoro J. Zeitschrift 14 , 305 - 314 .  

  6. Goody , R. 2000 . Sources and sinks of climate entropy . Quart. J. Roy. MeteoroL Soc . 126 , 1953 – 1970 .  

  7. Goody , R. 2007 . Maximum entropy production in climate theory . J. Atmos. Sci . 64 , 2735 – 2739 .  

  8. Grassl , H. 1981 . The climate at maximum entropy production by merid-ional atmospheric and oceanic heatfluxes . Quart. J. Roy. MeteoroL Soc . 107 , 153 – 166 .  

  9. Johnson , D. R. 1997 . General coldness of climate models and the second law: implications for modeling the Earth system . J. Clim . 10 , 2826 – 2846 .  

  10. Kiehl , J. T. and Trenberth , K. E. 1997 . Earth’s annual global mean energy budget . Bull. Am. MeteoroL Assoc . 78 , 197 – 208 .  

  11. Kleidon , A. and Fraedrich , K. 2005 . Biotic entropy production and global atmosphere-biosphere interactions. In: Non-Equilibrium Ther-modynamics and the Production of Entropy (eds. A. Kleidon and R. D. Lorenz ). Springer-Verlag, Berlin, Heidelberg , 173 - 189 .  

  12. Kleidon , A. , Fraedrich , K. and Heimann , M. 2000 . A green planet versus a desert world: estimating the maximum effect of vegetation on the surface energy balance . Clim. Change 44 , 471 – 493 .  

  13. Kleidon , A. , Fraedrich , K. , Kunz , T. and Lunkeit , E 2003 . The at-mospheric circulation and states of maximum entropy production . Geophys. Res. Let . 30 , L18363 .  

  14. Kleidon , A. , Fraedrich , K. , Kirk , E. and Lunkeit , E 2006 . Maximum entropy production and the strength of boundary layer exchange in an atmospheric general circulation model . Geophys. Res. Let . 33 , L06706 .  

  15. Kunz , T. , Fraedrich , K. and Kirk , E. 2008 . Optimisation of simplified GCMs using circulation indices and maximum entropy production . Clim. Dyn . 30 , 803 – 813 .  

  16. Kuo , H. L. 1965 . On formation and intensification of tropical cyclones through latent heat release by cumulus convection . J. Atmos. Sci . 22 , 40 – 63 .  

  17. Kuo , H. L. 1974 . Further studies of the parameterization of the influence of cumulus convection on large-scale flow . J. Atmos. Sci . 31 , 1232 – 1240 .  

  18. Lacis , A. A. and Hansen , K. E. 1974 . A parameterization for the absorp-tion of solar radiation in the Earth’s atmosphere . J. Atmos. Sci . 31 , 118 – 133 .  

  19. Laursen , L. and Eliasen , E. 1989 . On the effect of the damping mecha-nisms in an atmospheric general circulation model . Tellus 41A , 385 – 400 .  

  20. Lettau , H. 1954 . A study of the mass, momentum and energy budget of the atmosphere . Archiv fiir MeteoroL Geophys. Bioklim . 7 , 133 – 157 .  

  21. Lorenz , R. D. , Lunine , J. I. , Withers , P. G. and MacKay , C. P. 2002 . Titan, mars, and earth: entropy production by latitudinal heat transport. Geophys. Res. Let . 28 , 415 - 418 .  

  22. Louis , J. E 1979 . A parametric model of vertical eddy fluxes in the atmosphere . Bound. Layer MeteoroL 17 , 187 – 202 .  

  23. Louis , J. F. , Tiedke , M. and Geleyn , J.-F. 1982 . A short history of the PBL parameterisation at ECMWF . In: Proceedings of the ECMWF Workshop on Planetary Boundary Layer Parameterization. Reading , 25-27 Nov. 1981 , 59 – 80 .  

  24. Orszag , S. A. 1970 . Transform method for calculation of vector coupled sums . J. Atmos. Sci . 27 , 890 – 895 .  

  25. Ozawa , H. , Ohmura , A. , Lorenz , R. D. and Pujol , T. 2003 . The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev. Geophys . 41 , 1018 , 4.1 – 4.24 .  

  26. Paltridge , G. W. 1975 . Global dynamics and climate—a system of min-imum entropy exchange . Quart. J. Roy. MeteoroL Soc . 101 , 475 – 484 .  

  27. Peixoto , J. P. and Oort , A. H. 1992 . Physics of Climate . Am. Inst. Phys., 520 pp .  

  28. Peixoto , J. R , Oort , A. H., de Almeida , M. and Tome , A. 1991 . Entropy budget of the atmosphere. J. Geophy. Res . D6 , 10 981 – 10 988 .  

  29. Roecicner , E. , Arpe , K. and Bengtsson , L. 1992 . Simulation of present-day climate with the ECHAM model: impact of model physics and resolution. Technical Report 93, Max-Planck-Institut.  

  30. Sasamori , T. 1968 . The radiative cooling calculation for applica-tion to general circulation experiments . J. AppL Meteorol . 7 , 721 – 729 .  

  31. Slingo , A. and Slingo , J. M. 1991 . Response of the national cen-ter for atmospheric research community climate model to improve-ments in the representation of clouds . J. Geophys. Res . 96 , 341 – 357 .  

  32. Stephens , G. L. 1978 . Radiation profiles in extended water clouds. II: parameterization schemes . J. Atmos. Sci . 35 , 2123 – 2132 .  

  33. Stephens , G. L. , Ackermann , S. and Smith , E. A. 1984 . A shortwave parameterization revised to improve cloud absorption . J. Atmos. Sci . 41 , 687 – 690 .  

  34. Weiss , W. 1996 . The balance of entropy on earth . Cont. Mech. Thermo-dyn . 8 , 37 – 51 .  

  35. Woollings T. and Thuburn , J. 2006 . Entropy sources in a dynamical core atmosphere model . Quart. J. Roy. MeteoroL Soc . 132 , 43 – 59 .  

comments powered by Disqus