Start Submission Become a Reviewer

Reading: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospher...

Download

A- A+
Alt. Display

Original Research Papers

Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3

Author:

David L. Williamson

National Center for Atmospheric Research, Box 3000, Boulder, CO, US
X close

Abstract

The convergence of simulations from the Community Atmosphere Model with increasing resolution is determined in an aqua-planet context. Convergence as a function of scale is considered. Horizontal resolution (T42–T340) and time step (40–5 min) are varied separately. The simulations are sensitive to both. Global averages do not necessarily converge with increasing resolution. The zonal average equatorial precipitation shows a strong sensitivity to time step. Parametrizations should be applied in a range of time steps where such sensitivity is not seen. The larger scales of the zonal average equatorial precipitation converge with increasing resolution. There is a mass shift from polar to equatorial regions with increasing resolution with no indication of convergence. The zonal average cloud fraction decreases with increasing resolution with no indication of convergence. Equatorial wave propagation characteristics converge with increasing resolution, however a relatively high truncation of T170 is required to capture wavenumbers less than 16. Extremes are studied in the form of the probability density functions of precipitation. The largest half of the scales of the model converge for resolutions above T85.

How to Cite: Williamson, D.L., 2008. Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.848–862. DOI: http://doi.org/10.1111/j.1600-0870.2008.00339.x
3
Views
1
Downloads
  Published on 01 Jan 2008
 Accepted on 29 Apr 2008            Submitted on 19 Sep 2007

References

  1. Boville , B. A. 1991 . Sensitivity of simulated climate to model resolution . J. Climate 4 , 469 – 485 .  

  2. Cash , B. A. , Kushner , P. and Vallis , G. 2007 . Comment on “On the presence of annular variability in an aquaplanet model” by Masahiro Watanabe. Geophys. Res. Lett . 34 , L03707, https://doi.org/10.1029/2006GL027274 .  

  3. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J. R. and co-authors. 2004. Description of the NCAR community atmo-sphere model (CAM3.0). NCAR Technical Note NCAR/TN-464±STR, xii+214 pp.  

  4. Collins , W. D. , Bitz , C. M. , Blackmon , M. L. , Bonan , G. B. , Bretherton , C. S. and co-authors. 2006a. The community climate system model version 3 (CCSM3). J. Climate 19 , 2122-214 3 .  

  5. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J. R. and co-authors. 2006b. The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Climate 19 , 2144-216 1 .  

  6. Freitas , A. 1993 . Journal of fluids engineering editorial policy statement on the control of numerical accuracy . ASME J. Fluids Eng . 115 , 339 – 340 .  

  7. Giraldo , F. X. and Rosmond , T. E. 2004 . A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: dynamical core tests . Mon. Wea. Rev . 132 , 133 – 153 .  

  8. Giraldo , F. X. , Perot , J. B. and Fischer , P. F. 2003 . A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equa-tions . J. Comput. Phys . 190 , 623 – 650 .  

  9. Hack , J. J. , Caron , J. M. , Danabasoglu , G. , Oleson , K. W., Bitz , C. M. and co-author . 2006 . CCSM CAM3 climate simulation sensitivity to changes in horizontal resolution . J. Climate 19 , 2267 - 2289 .  

  10. Jablonowski , C. and Williamson , D. L. 2006a . A Baroclinic wave test case for dynamical cores of general circulation models: model intercomparisons. NCAR Technical Note NCAR/TN-469±STR available online at http://www.library.ucar.edu/uhtbin/hyperion-image/DR000790.  

  11. Jablonowski , C. and Williamson , D. L. 2006b . A baroclinic instabil-ity test case for atmospheric model dynamical cores . Quart. J. Roy. Meteor Soc . 132 , 2943 – 2976 .  

  12. Lander , J. and Hoskins , B. J. 1997 . Believable scales and parameter-izations in a spectral transform model . Mon. Wea. Rev . 125 , 292 – 303 .  

  13. Layton , A. T. and Spotz , W. F. 2003 . A semi-Lagrangian double Fourier method for the shallow water equations on the sphere . J. Comput. Phys . 189 , 180 – 196 .  

  14. Machenhauer , B. 1979 . The spectral method. In: Numerical Methods used in Atmospheric Models Volume 2 (ed. A. Kasahara ). GARP Publications Series No 17, WMO and ICSU, Geneva, 121 - 275 .  

  15. Nair , R. D. , Thomas , S. J. and Loft , R. D. 2005 . A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev . 133 , 814 - 828 .  

  16. Neale , R. B. and Hoskins , B. J. 2000 . A standard test for AGCMs including their physical parameterizations. I: the pro-posal. Atmos. Sci. Lett. 1, 101-107 (http://www.idealibrary . com/links/doi/ 10 . 1006/asle . 2000.0019 ).  

  17. Pope , V. D. and Stratton , R. A. 2002 . The processes governing horizontal resolution sensitivity in a climate model . Clim. Dyn . 19 , 211 – 236 .  

  18. Phillips , T. J. , Potter , G. L. , Williamson , D. L. , Cederwall , R. T. , Boyle , J. S. and co-authors. 2004 . Evaluating parameterizations in general circulation models: climate simulation meets weather prediction . Bull. Amer Meteor. Soc . 85 , 1903– 1915 .  

  19. Roache , P. J. , Ghia , K. N. and White , F. M. 1986 . Editorial Policy statement on the control of numerical accuracy. ASME J. Fluids Eng . 108 , 2 .  

  20. Roeckner , E. , Brokopf , R. , Esch , M. , Giorgetta , M. , Hagemann , S. and co-authors. 2006. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model . J. Climate 19 , 3771 - 3791 .  

  21. Stratton , R. A. 1999 . A high resolution AMIP integration using the Hadley Centre model HadAM2b . Clim. Dyn . 15 , 9 – 28 .  

  22. Watanabe , M. 2005 . On the presence of annular variability in an aquaplanet model . Geophys. Res. Lett . 32 , L05701 , https://doi.org/10.1029/2004GL021869 .  

  23. Watanabe , M. 2007 . Reply to comment by B. A. Cash et al. on “On the presence of annular variability in an aquaplanet model” . Geophys. Res. Lett . 34 , L03708 , https://doi.org/10.1029/2006GL028669 .  

  24. Wheeler , M. C. and Kiladis , G. N. 1999 . Convectively coupled equa-torial waves: analysis of clouds and temperature in the wavenumber-frequency domain . J. Atmos. Sci . 56 , 374 – 399 .  

  25. Williamson , D. L. 1999 . Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales . Tellus 51A , 663 – 673 .  

  26. Williamson , D. L. 2008 . Equivalent finite volume and spectral transform horizontal resolutions established for aqua-planet simulations. Tellus 60A , https://doi.org/10.1111/j.1600-0870.2008.00340.x .  

  27. Williamson , D. L. and Olson , J. G. 2003 . Dependence of aqua-planet simulations on time step . Quart. J. Roy. Meteor Soc . 129 , 2049 – 2064 .  

  28. Williamson , D. L. , Drake , J. B. , Hack , J. J. , Jakob , R., and Swarztrauber , P. N. 1992 . A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys . 102 , 211 - 224 .  

comments powered by Disqus