Start Submission Become a Reviewer

Reading: Equivalent finite volume and Eulerian spectral transform horizontal resolutions established ...

Download

A- A+
Alt. Display

Original Research Papers

Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations

Author:

David L. Williamson

National Center for Atmospheric Research, Box 3000, Boulder, CO, US
X close

Abstract

The equivalent resolutions for two different global dynamic cores are established when they are coupled to the sub-grid scale parametrization suite of the Community Atmosphere Model (CAM3). One core adopts the common Eulerian spectral transform formalism, the other adopts a finite volume approach. The equivalent resolutions are established over a range of resolutions employed today for climate models. The comparison is done in the context of the Aqua Planet Experiment (APE). Thus, it is based on the characteristics of free, unforced motions, due in large part to the dynamic component driven by the parametrized processes and explicit dissipation. The forced component arising from surface orography and land—ocean—sea—ice contrasts is not considered. The resolution equivalences are demonstrated for a number of model fields. These include selected time averaged, global and zonal averaged fields, the meridional structure of eddy kinetic energy and eddy temperature variance, the mean meridional eddy transports, the characteristics of tropical wave propagation and probability density functions of precipitation. These fields indicate that the 2° finite volume model is equivalent to T42 spectral transform model, 1° is equivalent to T85 and 0.5° is equivalent to T170. This proportional relationship does not hold at lower resolutions.

How to Cite: Williamson, D.L., 2008. Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.839–847. DOI: http://doi.org/10.1111/j.1600-0870.2008.00340.x
  Published on 01 Jan 2008
 Accepted on 29 Apr 2008            Submitted on 19 Sep 2007

References

  1. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J. R. and co-authors. 2004. Description of the NCAR community atmosphere model (CAM3.0). NCAR Technical Note NCAR/TN-464±STR, xii+214 pp .  

  2. Collins , W. D. , Bitz , C. M. , Blackmon , M. L. , Bonan , G. B. , Bretherton , C. S. and co-authors. 2006a. The community climate system model version 3 (CCSM3) . J. Climate 19 , 2122 - 2143 .  

  3. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J., R. and co-authors. 2006b . The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J. Climate 19 , 2144 - 2161 .  

  4. Durran , D. R. 1999 . Numerical Methods for Wave Equations in Geo-physical Fluid Dynamics . Springer , New York , 465 pp .  

  5. Hack , J. J. , Caron , J. M. , Danabasoglu , G. , Oleson , K. W. , Bitz , C. M. and co-authors. 2006. CCSM CAM3 climate simulation sensitivity to changes in horizontal resolution . J. Climate 19 , 2267 - 2289 .  

  6. Jablonowslci , C. and Williamson , D. L. 2006a . A baroclinic wave test case for dynamical cores of general circulation models: model intercomparisons. NCAR Technical Note NCAR/TN-469±STR available online at http://www.library.ucar.edu/uhtbin/hyperion-image/DR000790.  

  7. Jablonowslci , C. and Williamson , D. L. 2006b . A baroclinic instabil-ity test case for atmospheric model dynamical cores . Quart. J. Roy. Meteor Soc . 132 , 2943 – 2976 .  

  8. Lin , S. and Rood , R. B. 1997 . An explicit flux-form semi-Lagrangian shallow-water model on the sphere . Quart. J. Roy. Meteor Soc . 123 , 2477 – 2498 .  

  9. Machenhauer , B. 1979 . The spectral method. In: Numerical Methods Used in Atmospheric Models Volume 2, GARP Publications Series No. 17, (ed. A. Kasahara ), WMO and ICSU, Geneva, 121 - 275 .  

  10. Neale , R. B. and Hoskins , B. J. 2000 . A standard test for AGCMs including their physical parameterizations, I: the pro-posal. Atmos. Sci. Lett. 1, 101-107 available online at http://www.idealibrary . com/linlcs/doi/ 10 . 1006/asle . 2000.0019 .  

  11. Polvani , L. M. , Scott , R. K. and Thomas , S. J. 2004 . Numerically con-verged solutions of the global primitive equations for testing the dy-namical core of atmospheric GCMs . Mon. Wea. Rev . 132 , 2539 – 2552 .  

  12. Staniforth , A. and Cote , J. 1991 . Semi-Lagrangian integration schemes for atmospheric models - a review . Mon. Wea. Rev . 119 , 2206 – 2223 .  

  13. Wheeler , M. C. and Kiladis , G. N. 1999 . Convectively coupled equato-rial waves: Analysis of clouds and temperature in the wavenumber-frequency domain . J. Atmos. Sci . 56 , 374 – 399 .  

  14. Williamson , D. L. 1999 . Convergence of atmospheric simulations with increasing horizontal resolution and fixed forcing scales . Tellus 51A , 663 – 673 .  

  15. Williamson , D. L. 2008 . Convergence of aqua-planet simulations with increasing resolution in the community atmospheric model, Version 3. Tellus 60A , https://doi.org/10.1111/j.1600-0870.2008.00339.x .  

  16. Williamson , D. L. and Olson , J. G. 2003 . Dependence of aqua-planet simulations on time step . Quart. J. Roy. Meteor Soc . 129 , 2049 – 2064 .  

  17. Williamson , D. L. , Drake , J. B. , Hack , J. J. , Jakob , R. and Swarztrauber , P. N. 1992 . A standard test set for numerical approximations to the shallow water equations in spherical geometry . J. Comput. Phys . 102 , 211 – 224 .  

comments powered by Disqus