Start Submission Become a Reviewer

Reading: Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art ...

Download

A- A+
Alt. Display

Original Research Papers

Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models

Authors:

Tokuta Yokohata ,

National Institute for Environmental Studies, Tsukuba, JP
X close

Seita Emori,

National Institute for Environmental Studies, Tsukuba; Frontier Research Center for Global Change, Yokohama; Center for Climate System Research, University of Tokyo, Kashiwa, JP
X close

Toru Nozawa,

National Institute for Environmental Studies, Tsukuba, JP
X close

Tomoo Ogura,

National Institute for Environmental Studies, Tsukuba, JP
X close

Michio Kawamiya,

Frontier Research Center for Global Change, Yokohama, JP
X close

Yoko Tsushima,

Frontier Research Center for Global Change, Yokohama, JP
X close

Tatsuo Suzuki,

Frontier Research Center for Global Change, Yokohama, JP
X close

Seiji Yukimoto,

Meteorological Research Institute, Tsukuba, JP
X close

Ayako Abe-Ouchi,

Frontier Research Center for Global Change, Yokohama; Center for Climate System Research, University of Tokyo, Kashiwa, JP
X close

Hiroyasu Hasumi,

Center for Climate System Research, University of Tokyo, Kashiwa, JP
X close

Akimasa Sumi,

Transdisciplinary Initiative for Global Sustainability, Tokyo, JP
X close

Masahide Kimoto

Center for Climate System Research, University of Tokyo, Kashiwa, JP
X close

Abstract

We compared the climate response of doubled CO2 equilibrium experiments (2 × CO2) by atmosphere—slab ocean coupled general circulation models (ASGCMs) and that of 1% per year CO2 increase experiments (1%CO2 by atmosphere—ocean coupled general circulation models (AOGCMs) using eight state-of-the-art climate models. Climate feedback processes in 2 × CO2 are different from those in 1%CO2, and the equilibrium climate sensitivity (T2×) in 2 × CO2 is different from the effective climate sensitivity (T2×, eff) in 1%CO2. The difference between T2× and T2×, eff is from −1.3 to 1.6 K, a large part of which can be explained by the difference in the ice-albedo and cloud feedback. The largest contribution is cloud SW feedback, and the difference in cloud SW feedback for 2 ×CO2 and 1%CO2 could be determined by the distribution of the SAT anomaly which causes differences in the atmospheric thermal structure. An important factor which determines the difference in ice-albedo feedback is the initial sea ice distribution at the Southern Ocean, which is generally overestimated in 2 ×CO2 as compared to 1%CO2 and observation. Through the comparison of climate feedback processes in 2 ×CO2 and 1%CO2, the possible behaviour of the time evolution of T2×, eff is discussed.

How to Cite: Yokohata, T., Emori, S., Nozawa, T., Ogura, T., Kawamiya, M., Tsushima, Y., Suzuki, T., Yukimoto, S., Abe-Ouchi, A., Hasumi, H., Sumi, A. and Kimoto, M., 2008. Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.946–961. DOI: http://doi.org/10.1111/j.1600-0870.2008.00345.x
2
Views
  Published on 01 Jan 2008
 Accepted on 3 Jun 2008            Submitted on 10 Oct 2007

References

  1. Boer , G. J. and Yu , B. 2003 . Dynamical aspects of climate sensitivity . Geophys. Res. Lett . 30 , 1135 , https://doi.org/10.1029/2002GL016549 .  

  2. Bony , S. and Dufresne , J.-L. 2005 . Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models . Geophys. Res. Lett . 32 , L20806 , https://doi.org/10.1029/2005GL023851 .  

  3. Cess , R. D. , Potter , G. L. , Blanchet , J. P. , Boer , G. L. , Del Genio , A. D. and co-authors . 1990 . Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models . J. Geophys. Res . 95 , 16601 - 16615 .  

  4. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J. R. and co-authors. 2004. Description of the NCAR Community Atmosphere Model (CAM3.0). Technical Note TN-464±STR, National Center for Atmospheric Research, Boulder , 214 pp .  

  5. Collins , W. D. , Booth , B. B. B. , Harris , G. R. , Murphy , J. M. , Sexton , D. M. H. and co-authors. 2006. Towards quantifying uncertainty in transient climate change . Clim. Dyn . 27 , 127 - 147 .  

  6. Colman , R. A. 2003 . A comparison of climate feedbacks in general circulation model . Clim. Dyn . 20 , 865 – 873 .  

  7. Diansky , N. A. , Bagno , A. V. and Zalensny , V. B. 2002 . Sigma model of global ocean circulation and its sensitivity to variations in wind stress . Atmos. Ocean. Phys . 38 , 477 – 494 .  

  8. Flato , G. M. 2005 . The Third Generation Coupled Global Climate Model (CGCM3). http://www.cccma.bc.ec.gc.ca/models/cgcm3.shtml.  

  9. Forster , P. M. D. and Taylor , K. E. 2006 . Climate Forcings and climate sensitivities diagnosed from coupled climate model integrations . J. Clim . 19 , 6181 – 6194 .  

  10. Galin , V. Ya,Volodin E. M. and Smyshliaev , S. P. 2003 . Atmospheric general circulation model of INIM RAS with ozone dynamics . Russ. MeteoroL HydroL 5 , 13 – 22 .  

  11. GFDL GAMDT ( The GFDL Global Atmospheric Model Development Team) 2004. The new GFDL global atmosphere and land model AM2-LM2: evaluation with prescribed SST simulations. J. Clim. 17 , 4641-467 3 .  

  12. Gnanadesilcan , A. , Dixon , K. W. , Barreiro , M. , Beesley , J. A. , Cooke , W. F. and co-authors. 2004. GFDL’s CM2 global coupled climate models.Part 2: The baseline ocean simulation . J. Clim . 19 , 675 - 697 .  

  13. Gregory , J. M. and Webb , M. J. 2008 . Tropospheric adjustment induces a cloud component in CO2 forcing . J. Clim . 21 , 58 – 71 .  

  14. Harris , G. R. , Sexton , D. M. H. , Booth , B. B. B. , Colllins , M. , Murphy , J. M. and co-authors. 2006. Frequency distributions of transient re-gional climate change from perturbed physics ensembles of general circulation model simulations . Clim. Dyn . 27 , 357 - 375 .  

  15. Johns , T. C. , Durman , C. F. , Banks , H. T. , Roberts , M. J. , McLaren , A. J. and co-authors . 2006. The new Hadley Center climate model (HadGEM1): evaluation of coupled simulations. J. Clim . 19 , 1327-135 3 .  

  16. K1 model developers 2004. K-1 coupled GCM (MIROC) description. In: K-1 Tec. Rep. 1 (eds S . Emori and H. Hasumi , Univ. of Tokyo, Tokyo , 1 - 34 .  

  17. Kiehl , J. T. , Shields , C. A. , Hack , J. J. and Collins , W. D., 2006 . The Climate sensitivity of the Communiti Climate System Model Version 3 . J. Clim . 19 , 2584 – 2596 .  

  18. Lindzen , R. S. and Farrell , B. F. 1980 . A simple approximate result for maximum growth rate of baroclinic instabilities . J. Atmos. Sci . 37 , 1648 – 1654 .  

  19. Martin , G. M. , Dearden , C. , Greeves , C. , Hinton , T. , Inness , P. and co-authors . 2004. Evaluation of the Atmospheric Performance of HadGAM/GEM1. Hadley Centre Technical Note No. 54, Hadley Cen-tre for Climate Prediction and Research/Met Office, Exeter.  

  20. McFarlane , N. A. , Boer , G. J. , Blanchet , J.-P. and Lazare , M. 1992 . The Canadian Climate Centre second-generation general circulation model and its equilibrium climate . J. Clim . 5 , 1013 – 1044 .  

  21. Meehl , G. A. , Covey , C. , Delworth , T. , Latif , M. , McAvaney , B. and co-authors. 2007a. The WCRP CMIP3 multimodel dataset: A new era in climate change research . Bull. Amer Meteor Soc . 88 , 1383 - 1394 .  

  22. Meehl , G. A. , Stocker , T. F. , Collins , W. D. , Friedlingstein , P. , Gaye , A. T. and co-authors. 2007b . Global climate projection. In: Climate Change 2007 The physical science basis. Contribution of Working Groupe I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Susan , D. Qin , M. Manning , Z. Chen , M. Marquis and co-editors) , Cambridge University Press , New York , 747 - 845 .  

  23. Murphy , J. M. 1995 . Transient response of the Hadley Centre coupled ocean-atmophere model to increasing carbon dixide. Part III: analy-sis of global mean response using simple models . J. Clim . 8 , 496 – 514 .  

  24. Ogura , T. , Emori , S. , Webb , M. J. , Tsushima , Y. , Yokohata , T. and co-authors. 2008. Towards understanding cloud response in atmospheric GCMs: the use of tendency diagnostics . J. Meteorol. Soc. Japan 86 , 69 - 79 .  

  25. Pacanowski , R. C. , Dixon , K. and Rosati , A. 1993 . The GFDL Mod-ular Ocean Model Users Guide , Version 1.0. GFDL Ocean Group Technical Report No. 2 , Geophysical Fluid Dynamics Laboratory , Princeton .  

  26. Raper , S. C. , Gregory , J. M. and Stouffer , R. J. 2002 . The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response . J. Clim . 15 , 124 – 130 .  

  27. Rayner , N. A. , Parker , D. E. , Horton , E. B. , Folland , C. K. , Alexander , L. V. and co-authors . 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res . 108 , 4407 , https://doi.org/10.1029/2002JD002670 .  

  28. Randall , D. A. , Wood , R. A. , Bony , S. , Colman , R. , Fichefet , T. and co-authors. 2007. Climate models and their evaluation. In: Climate Change 2007 The physical science basis. Contribution of Working Groupe I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , (eds S. Susan , D. Qin , M. Manning , Z. Chen , M. Marquis and co-editors ), Cambridge University Press , New York , 589 - 662 .  

  29. Rind , D. R. , Hearly , C. , Parkinson , C. and Martinson , D. 1995 . The role of sea ice in 2 X CO2 climate model sensitivity. Part I: the total influence of sea ice thickness and extent . J. Clim . 8 , 449 – 463 .  

  30. Russel , J. L. , Dixon , K. W. , Gnanadesilcan , A. and Stouffer , R. J. 2006 . The southern hemisphere westerlies in a warming world: Propping open the door to the deep ocean . J. Clim . 19 , 6832 – 6390 .  

  31. Roberts , M. J. 2004 . The Ocean Component of HadGEM1. GMR Re-port Annex IV.D.3, Hadley Centre for Climate Prediction and Re-search/Met Office, Exeter.  

  32. Senior , C. A. and Mitchell , J. E B. 1993 . Carbon dioxide and climate: the impact of cloud parameterization . J. Clim . 6 , 393 – 418 .  

  33. Senior , C. A. and Mitchell , J. E B. 2000 . The time-dependence of climate sensitivity . Geophys. Res. Lett . 27 , 2685 – 2688 .  

  34. Shibata , K. , Yoshimura , H. , Oizumi , M. , Hosaka , M. and Sugi , M. 1999 . A simulation of troposphere, stratosphere and mesosphere with an MRI/JMA98 GCM . Papers in Meteorology and Geophysics 50 , 15 – 53 .  

  35. Smith , R. D. and Gent , P. R. 2004 . Reference Manual for the Parallel Ocean Program (POP) , Ocean Component of the Community Climate System Model (CCSM2.0 and 3.0). Technical Report LA-UR-02-2484 , Los Alamos National Laboratory , Los Alamos .  

  36. Soden , B. J. and Held , I. M. 2006 . An assessment of climate feedbacks in coupled ocean-atmosphere models . J. Clim . 19 , 3354 – 3360 .  

  37. Soden , B. J. , Broccoli , R. S. and Helmer , R. S. 2004 . On the use of cloud forcing to estimate cloud feedback . J. Clim . 17 , 3661 – 3665 .  

  38. Spelman , M. J. and Manabe , S. 1984 . Influence of oceanic heat transport upon the sensitivity of a model climate . J. Geophys. Res . 89 , 571 – 586 .  

  39. Stouffer , M. J. 2004 . Time scales of climate response . J. Clim . 17 , 209 – 217 .  

  40. Taylor , K. E. , Crucifix , M. , Braconnot , P. , Hewitt , C. D. , Doutriaux , C. and co-authors. 2007. Estimating short-wave radiative forcing and response in climate models . J. Clim . 20 , 2530 - 2543 .  

  41. Tsushima , Y. , Emori , S. , Ogura , T. , Kimoto , M. , Webb , M. J. and co-authors. 2006. Importance of th mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study . Clim. Dyn . 27 , 113 - 126 .  

  42. Watterson , I. G. 2000 . Interpretation of simulated global warming using a simple model . J. Clim . 13 , 202 – 215 .  

  43. Webb , M. J. , Senior , C. A. , Sexton , D. M. H. , Ingram , W. J. , Williams , K. D. and co-authors. 2006. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles . Clim. Dyn . 26 , 145 - 165 .  

  44. Wetherald , R. T. and Manabe , S. 1988 . Cloud feedback processes in a general circulation model . J. Atms. Sci . 45 , 1397 – 1415 .  

  45. Williams , K. and Tsedoius , J. 2007 . GCM intercomparison of global cloud regimes: present-day evaluation and climate change response . Clim. Dyn . 26 , 145 – 165 .  

  46. Williams , K. , Ringer , M. , Senior , C. A. , Webb , M. J. , McAvaney , B. J. and co-authors. 2006. Evaluation of a component of the cloud response to climate change in an intercomparison of climate models . Clim. Dyn . 26 , 145 - 165 .  

  47. Williams , K. D. , Ingram , W. J. and Gregory , J. M. 2008 . Time variation of climate sensitivity in GCMs. J. Clim . https://doi.org/10.1175/2008JCLI2371.1 .  

  48. Winton , M. 2006 . Surface albedo feedback estimates for the AR4 climate models . J. Clim . 19 , 359 – 365 .  

  49. Yin , J. H. 2005 . A consistent poleward shift of the storm track in sim-ulation of 21st century climate . Geophys. Res. Lett . 32 , L18701 , https://doi.org/10.1029/2005GL023684 .  

  50. Yokohata , T. , Emori , S. , Nozawa , T. , Ogura , T. , Tsushima , Y. and co-authors. 2005a. Climate response to volcanic forcing: Validation of climate sensitivity of a coupled atmosphere—ocean general circulation model . Geophys. Res. Lett . 32 , L21710, https://doi.org/10.1029/2005GL023542 .  

  51. Yokohata , T. , Emori , S. , Nozawa , T. , Ogura , T. , Tsushima , Y. and co-authors. 2005b. A simple scheme for climate feedback analysis . Geo-phys. Res. Lett . 32 , L19703, https://doi.org/10.1029/2005GL023673 .  

  52. Yokohata , T. , Emori , S. , Nozawa , T. , Ogura , T. , Okada , N. and co-authors. 2007. Different transient climate responses of two versions of an atmosphere—ocean coupled general circulation model . Geophys. Res. Lett . 34 , L02707, https://doi.org/10.1029/2006GL027966 .  

  53. Yukimoto , S. , Noda , A. , Kitoh , A. , Sugi , M. , Kitamura , Y. and co-authors. 2001. The new Meteorological Research Institute global ocean-atmosphere coupled GCM (MRI-CGCM2)-Model climate and variability . Papers in Meteorology and Geophysics 51 , 47 - 88 .  

comments powered by Disqus