Start Submission Become a Reviewer

Reading: Constraining climate model parameters from observed 20th century changes

Download

A- A+
Alt. Display

Original Research Papers

Constraining climate model parameters from observed 20th century changes

Authors:

Chris E. Forest ,

Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, US
X close

Peter H. Stone,

Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, US
X close

Andrei P. Sokolov

Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, US
X close

Abstract

We present revised probability density functions for climate model parameters (effective climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forcing) that are based on climate change observations from the 20th century. First, we compare observed changes in surface, upper-air, and deep-ocean temperature changes against simulations of 20th century climate in which the climate model parameters were systematically varied. The estimated 90% range of effective climate sensitivity is 2–5 K but no corresponding upper bound can be placed on the equilibrium climate sensitivity. The net aerosol forcing strength for the 1980s has 90% bounds of −0.70 to −0.27 Wm−2. The rate of deep-ocean heat uptake corresponds to an effective diffusivity, Kv , with a 90% range of 0.04–4.1 cm2 s−1. Second, we estimate the effective climate sensitivity and rate of deep-ocean heat uptake for 11 of the IPCC AR4 AOGCMs. By comparing against the acceptable combinations inferred from the observations, we conclude that the rates of deep-ocean heat uptake for the majority of AOGCMs lie above the observationally based median value. This implies a bias in the predictions inferred from the IPCC models alone.

How to Cite: Forest, C.E., Stone, P.H. and Sokolov, A.P., 2008. Constraining climate model parameters from observed 20th century changes. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.911–920. DOI: http://doi.org/10.1111/j.1600-0870.2008.00346.x
  Published on 01 Jan 2008
 Accepted on 4 Jun 2008            Submitted on 19 Dec 2007

References

  1. Allen , M. R. and Tett , S. E B. 1999 . Checking for model consistency in optimal fingerprinting . Clim. Dyn . 15 , 419 – 434 .  

  2. Andrews , D. G. and Allen , M. R. 2008 . Diagnosis of climate models in terms of transient climate response and feedback response time . Atm. Sci. Lett . 9 ( 1 ), 7 – 12 .  

  3. Andronova , N. G. and Schlesinger , M. E. 2001 . Objective Estimation of the Probability Density Function for Climate Sensitivity. J. Geophys. Res . 106 ( D19 ), 22 605 – 22612 .  

  4. Bonan , G. B. , Oleson , K. W. , Vertenstein , M. , Lewis , S. , Zeng , X. and co-authors . 2002. The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. J. Clim . 15 , 3123-314 9 .  

  5. Cess , R. D. , Potter , G. L. , Blanchet , P. , Boer , G. J. , Del Genio , A. D. and co-authors . 1990 . Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res . 95 , 16601 - 16615 .  

  6. Colman , R. 2003 . A comparison of climate feedbacks in general circu-lation models . Clim. Dyn . 20 , 865 – 873 .  

  7. Forest , C. E. , Allen , M. R. , Sokolov , A. P. and Stone , P. H. 2001 . Con-straining Climate Model Properties Using Optimal Fingerprint Detec-tion Methods . Clim. Dyn . 18 , 277 – 295 .  

  8. Forest , C. E. , Stone , PH. , Sokolov , A. P. , Allen , M. R. and Webster , M. D. 2002 . Quantifying uncertainties in climate system properties with the use of recent climate observations . Science 295 , 113 – 117 .  

  9. Forest , C. E. , Stone , P. H. and Sokolov , A. P. 2006 . Estimated PDFs of cli-mate system properties including natural and anthropogenic forcings. Geophys. Res. Lett . 33 , L01705, https://doi.org/10.1029/2005GL023977 .  

  10. Forster , P. , Ramaswamy , V. , Artaxo , P. , Bemtsen , T. , Betts , R. and co-authors. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Con-tribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis and co-editors ), Cambridge University Press , Cambridge, UK and New York, NY, USA , 129 - 234 .  

  11. Gouretski , V. and Koltermann , K. P. 2007 . How much is the ocean really warming? Geophys. Res. Lett . 34 , L01610 , https://doi.org/10.1029/2006GL027834 .  

  12. Gregory , J. M. and Mitchell , J. E B. 1997 . The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment . Geophys. Res. Lett . 24 , 1943 – 1946 .  

  13. Hansen , J. , Russell , G. , Rind , D. , Stone , P. , Lacis , A. and co-authors . 1983 . Efficient three-dimensional global models for climate studies: models land II. Mon. Weath. Rev . 111 , 609 - 662 .  

  14. Hansen , J. , Lacis , A. , Rind , D. , Russell , G. , Stone , P. and co-authors . 1984 . Climate sensitivity: analysis of feedback mechanisms. In: Climate Processes and Climate Sensitivity, Geophysical Monograph (eds J. E. Hansen and T. Takahashi ), Volume 29 , American Geophys-ical Union, Washington, DC , 130 - 163  

  15. Hegerl , G. C. , Zwiers , E W. , Braconnot , P. , Gillett , N. P. , Luo , Y. and co-authors. 2007. Understanding and attributing climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis and co-editors ), Cambridge Univer-sity Press , Cambridge, UK and New York, NY, USA , 663 - 746  

  16. Houghton , J. T. , Ding , Y. , Griggs , D. K. , Noguer , M. , van der Linden , P. J. , (eds.) 2001 . Climate Change 2001: The Scientific Basis . Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA .  

  17. Knutti , R. , Stocker , T. E, Joos , E and Plattner , G.-K. 2003. Probabilistic climate change projections using neural networks. Clim. Dyn . 21 , 257 - 272 .  

  18. Levitus , S. , Antonov , J. and Boyer , T. P. 2005 . Warming of the World Ocean, 1955-2003 . Geophys. Res. Let . 32 , L02604 , https://doi.org/10.1029/2004GL021592 .  

  19. Meehl , G. A. , Stocker , T. E , Collins , W. D. , Friedlingstein , P. , Gaye , A. T. and co-authors. 2007a. Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis and co-editors ), Cambridge University Press , Cambridge, UK and New York, NY, USA , 747 - 846 .  

  20. Meehl , G. A. , Covey , C. , Delworth , T. , Latif , M. , McAvaney , B. and co-authors. 2007 b. The WCRP CMIP3 multimodel dataset: a new era in climate change research . Bull. Am. Meteorol. Soc . 88 ( 9 ), 1383-1394 .  

  21. Murphy , J. 1995 . Transient response of the hadley centre coupled ocean-atmosphere model to increasing carbon dioxide. Part DI: analysis of global-mean response using simple models. J. Clim . 8 , 496 - 514.  

  22. Pierce , D. W. , Barnett , T. P. , AchutaRao , K. M. , Gleckler , P. J. , Gregory , J. M. and co-authors. 2006. Anthropogenic warming of the oceans: observations and model results . J. Clim . 19 , 1873 – 1900 .  

  23. Prinn , R. , Jacoby , H. , Sokolov , A. , Wang , C. , Xiao , X. and co-authors . 1999 . Integrated Global System Model for climate policy assessment: feedbacks and sensitivity studies. Climatic Change 41 ( 3/4 ), 469 – 546 .  

  24. Randall , D. A. , Wood , R. A. , Bony , S. , Colman , R. , Fichefet , T. and co-authors. 2007. Climate models and their evaluation. In: Climate Change 2007, The Physical Science Basis (eds S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis and co-editors) Cambridge University Press , Cambridge, UK , 589 - 662 .  

  25. Raper , S. C. B. , Gregory , J. M. and Stouffer , R. S. 2001 . The role of climate sensitivity and ocean heat uptake on AOGCM transient tem-perature response . J. Clim . 15 , 124 – 130 .  

  26. Schlosser , C. A. , Kicklighter , D. and Sokolov , A. 2007 . A Global Land System Framework for Integrated Climate-Change Assessments, MIT JP Report 147. Tech. rept. http://web.mitedu/globalchange/www/MITJPSPGC_Rpt147.pdf. MIT, Joint Program on the Science and Policy of Global Change, Room E40-428, 77 Massachusetts Ave., Cambridge, MA 02139.  

  27. Sokolov , A. P. 2006 . Does model sensitivity to changes in CO2 provide a measure of sensitivity to other forcings? J. Clim . 19 , 3204 – 3306 .  

  28. Sokolov , A. P. and Stone , P. H. 1998 . A flexible climate model for use in integrated assessments . Clim. Dyn . 14 , 291 – 303 .  

  29. Sokolov , A. P. , Forest , C. E. and Stone , P. H. 2003 . Comparing oceanic heat uptake in AOGCM transient climate change experiments. . Clim . 16 , 1573 – 1582 .  

  30. Sokolov , A. P. , Schlosser , C. A. , Dutkiewicz , S. , Paltsev , S. , Kick-lighter , D. W. and co-authors. 2005. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation, MIT JP Report 124. Tech. rept. http://web.mitedu/globalchange/www/MITJPSPGC_Rpt124.pdf. MIT, Joint Program on the Science and Policy of Global Change, Room E40-428, 77 Massachusetts Ave., Cambridge, MA 02139 .  

  31. Solomon , S. , Qin , D. , Manning , M. , Chen , Z., Marquis and co-editors 2007. Climate Change 2007: The Physical Science Basis. Cambridge University Press , Cambridge, UK .  

  32. Stainforth , D. A. , Aina , T. , Christensen , C. , Collins , M. , Faull , N. and co-authors. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases . Nature 433 , 403 - 406 .  

  33. Stone , P. H. and Yao , M.-S. 1987 . Development of a two-dimensional zonally averaged statistical-dynamical model. Part II: the role of eddy momentum fluxes in the general circulation and their parametrization . J. Atmos. Sci . 44 ( 24 ), 3769 – 3786 .  

  34. Stone , P. H. and Yao , M.-S. 1990 . Development of a two-dimensional zonally averaged statistical-dynamical model. Part BI: the parametrization of the eddy fluxes of heat and moisture . J. Clim . 3 ( 7 ), 726 – 740 .  

  35. Stott , P. A. and Forest , C. E. 2007 . Ensemble climate predictions using climate models and observational constraints. Phil. Trans. R. Soc . A 365, 2029-2052 . https://doi.org/10.1098/rsta.2007.2075 .  

  36. Stott , P. A. , Allen , J. E B. , Mitchell , M. R. , Delworth , T. L. , Gregory , J. M. and co-authors. 2006. Observational constraints on past attributable warming and predictions of future global warming . J. Clim . 19 , 3055 - 3069 .  

  37. Webster , M. D. and Sokolov , A. P. 2000 . A methodology for quantify-ing uncertainty in climate projections . Climatic Change 46 ( 4 ), 417 – 446 .  

comments powered by Disqus