Start Submission Become a Reviewer

Reading: Eulerian and Lagrangian observability of point vortex flows

Download

A- A+
Alt. Display

Original Research Papers

Eulerian and Lagrangian observability of point vortex flows

Author:

Arthur J. Krener

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216, US
X close

Abstract

We study the observability of one and two-point vortex flow from one or two Eulerian or Lagrangian observations. By observability, we mean the ability to determine the locations and strengths of the vortices from the time history of the observations. An Eulerian observation is a measurement of the velocity of the flow at a fixed point in the domain of the flow. A Lagrangian observation is the measurement of the position of a particle moving with the fluid. To determine observability, we introduce the observability and the strong observability rank conditions and compute them for the various vortex configurations and observations in this idealized setting. We find that vortex flows with Lagrangian observations tend to be more observable then the same flows with Eulerian observations. We also simulate extended Kalman filters for the various vortex configurations and observations and find that they perform poorly when the ORC or the strong observability rank condition fails to hold.

How to Cite: Krener, A.J., 2008. Eulerian and Lagrangian observability of point vortex flows. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.1089–1102. DOI: http://doi.org/10.1111/j.1600-0870.2008.00347.x
  Published on 01 Jan 2008
 Accepted on 19 May 2008            Submitted on 26 Sep 2007

References

  1. Acheson , D. J. 1990 . Elementary Fluid Dynamics . Clarendon Press , Oxford , 397 pp .  

  2. Aref , H., 1983 . Integrable, Chaotic and Turbulent Vortex Motion in Two-Dimensional Flows . Ann. Rev. Fluid Mech . 15 , 345 – 389 .  

  3. Gelb , A. 1974 . Applied Optimal Estimation . MIT Press , Cambridge , MA , 374 pp .  

  4. Hermann , R. and Krener , A. J. 1977 . Nonlinear Controllability and Observability. IEEE, Trans. Auto. Control 22 , 728 - 740 .  

  5. Ide , K. and Ghil , M. 1997a . Extended Kalman Filtering for Vortex Sys-tems. Part I: Methodology and Point Vortices . Dyn. Atmos. Oceans 27 , 301 – 332 .  

  6. Ide , K. and Ghil , M. 1997b . Extended Kalman Filtering for Vortex Systems. Part H: Rankine Vortices . Dyn. Atmos. Oceans 7 , 333 – 350 .  

  7. Ide , K. , Kuznetsov , L. and Jones , C. K. R. T. 2002 . Lagrangian Data Assimilation for Point Vortex Systems. J. Turbulence 3 , available online at http://www.tandf.co.uk/journals/titles/14685248.asp.  

  8. Krener , A. J. 2002 . The Convergence of the Extended Kalman filter . In: Directions in Mathematical Systems Theory and Optimization (eds A. Rantzer and C. I. Byrnes ). Springer Verlag , Berlin , 173 – 182 .  

  9. Kuznetsov , L. , Ide , K. and Jones , C. K. R. T. 2003 . A Method for assimilation of Lagrangian data. Mon. Wea. Re v . 131 , 2247 – 2260 .  

comments powered by Disqus