Start Submission Become a Reviewer

Reading: Convection in Lorenz’s global energy cycle with the ECMWF model

Download

A- A+
Alt. Display

Original Research Papers

Convection in Lorenz’s global energy cycle with the ECMWF model

Authors:

Martin Steinheimer ,

Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, 1090 Vienna, AT
X close

Michael Hantel,

Department of Meteorology and Geophysics, University of Vienna, Althanstraße 14, 1090 Vienna, AT
X close

Peter Bechtold

European Centre for Medium-Range Weather Forecasts, Reading, GB
X close

Abstract

Lorenz’s global energy cycle includes the conversion rate C between available potential and kinetic energy. In traditional estimates of C only gridscale processes were evaluated; subgridscale processes were lumped into dissipation. It is argued that this is inadequate; organized subgridscale heat fluxes like deep convection cannot be treated as molecular.

Here both Cgrid and Csub are evaluated from the ECMWF Integrated Forecast System, for a 1-yr forecast in climate mode. The subgridscale fluxes are obtained from the model parametrization and the results tested for consistency; the largest contribution comes from the convection scheme. The integrand of Csub, the familiar ‘buoyancy flux’ –̅αʹ̅ωʹ, is locally much smaller than its gridscale counterpart –̅α̅ω. However, the buoyancy flux is upward throughout, and thus representative for, the global atmosphere. The global annual means are Cgrid = (3.4 ± 0.1) W m−2 and Csub = (1.7 ± 0.1) W m−2. Further, the gridscale generation rate of available potential energy is evaluated independently and found to be Ggrid = (3.0 ± 0.2) W m−2.

These results suggest that (i) the subgridscale processes contribute significantly to the Lorenz energy cycle and (ii) the cycle, represented by the total dissipation of D = (5.1 ± 0.2) W m−2, is more intense than all earlier gridscale estimates have indicated.

How to Cite: Steinheimer, M., Hantel, M. and Bechtold, P., 2008. Convection in Lorenz’s global energy cycle with the ECMWF model. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.1001–1022. DOI: http://doi.org/10.1111/j.1600-0870.2008.00348.x
  Published on 01 Jan 2008
 Accepted on 14 May 2008            Submitted on 19 Nov 2007

References

  1. Arakawa , A. 2004 . The cumulus parametrization problem: past, present, and future . J. Climate 17 , 2493 – 2525 .  

  2. Arpe , K. , Branlcovic , C. , Oriol , E. and Speth , P. 1986 . Variability in time and space of energetics from a long series of atmospheric data produced by ECMWF . Beitr Phys. Atmos . 59 , 321 – 355 .  

  3. Bhatla , R. , Mohanty , U. , Raju , P. and Madan , O. 2004 . A study on dy-namic and thermodynamic aspects of breaks in the summer monsoon over India. Int. J. Climatol . 24 , 341 - 360 .  

  4. Boer , G. J. 1975 . Zonal and eddy forms of the available potential energy equations in pressure coordinates. Tellus 27 , 433 - 443 .  

  5. Boer , G. J. and Lambert , S . 2008 . The energy cycle in atmospheric models. Clim. Dyn . 30 , 371 - 390 .  

  6. ECMWF ECMWF 2000 . IFS documentation (CY31r1). ECMWF , http://www.ecmwf.int/research/ifsdocs/CY31r1/index.html .  

  7. Falk , G. and Ruppel , W. 1976 . Energie und Entropie. Eine Einfiihrung in die The rmodynamik , Springer , Berlin - Heidelberg - New York , 408 .  

  8. Fortelius , C. 1995 . Inferring the diabatic heat and moisture forc-ing of the atmosphere from assimilated data . J. Climate 8 , 224 – 239 .  

  9. Gill , A. E. 1982 . Atmosphere-Ocean Dynamics , Volume 30 : International Geophysics Series, Academic Press , Orlando, Florida 662 .  

  10. Haimberger , L. and Hantel , M. 2000 . Implementing convection into Lorenz’s global cycle. Part II: a new estimate of the conversion rate into kinetic energy . Tellus 52A , 75 – 92 .  

  11. Hamelberger , F. , Haimberger , L. and Hantel , M. 2001 . Convection in PIDCAP. Part I: Evaluating LAM convection . MeteoroL Atmos. Phys . 77 , 85 – 98 .  

  12. Hantel , M. and Baader , H. R. 1978 . Diabatic heating climatology of the zonal atmosphere . J. Atmos. Sci . 35 , 1180 – 1189 .  

  13. Hantel , M. and Haimberger , L. 2000 . Implementing convection into Lorenz’s global cycle. Part I: gridscale averaging of the energy equa-tions . Tellus 52A , 66 – 74 .  

  14. Hantel , M. , Ehrendorfer , M. and Haimberger , L. 1993 . A thermodynamic diagnostic model for the atmosphere. Part the general theory and its consequences . MeteoroL Z., N.E 2 , 255 – 271 .  

  15. Hantel , M. , Haimberger , L. and Hamelbeck , F. 2001 . Convection in PIDCAP Part DIAMOD-a standard for diagnosing convective quantities . MeteoroL Atmos. Phys . 77 , 185 – 204 .  

  16. Hortal , M. 2002 . The development and testing of a new two-time-level semi-Lagrangian scheme (SETTLS) in the ECMWF forecast model . Quart. J. Roy. Met. Soc . 128 , 1671 – 1687 .  

  17. Hoskins , B. J. , Hsu , H. H. , James , I. N. , Masutani , M. , Sardeshmulch , P. D. and co-authors. 1989 . Diagnostics of the global atmospheric circulation , WCRP-27. WMO, 217.  

  18. Johnson , D. 2000 . Entropy, the Lorenz Energy Cycle, and Climate. In: General Circulation Model Development. Past, Present, and Future, (ed. D. Randall ), Volume 70: International Geophysics Series, Chapter 22,659-720. Academic Press, San Diego, California; London.  

  19. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. , and co-authors. 1996 . The NCEP/NCAR 40-year reanalysis project. Bull. Amer MeteoroL Soc. 77 , 437 - 471 .  

  20. Li , L. , Ingersoll , A. R , Jiang , X. , Feldman , D. and Yung , Y. L. 2007 . Lorenz energy cycle of the global atmosphere based on reanalysis datasets . Geophys. Res. Lett . 34 , L16813 .  

  21. Lorenz , E. N. 1955 . Available potential energy and the maintenance of the general circulation . Tellus 7 , 157 – 167 .  

  22. Lorenz , E. N. 1967 . The Nature and Theory of the General Circulation of the Atmosphere , WMO-No.218.TP.115. World Meteorological Or-ganization , 161 .  

  23. Newell , R. E. , Vincent , D. G. , Dopplick , T. G. , Ferruzza , D. and Kidson , J. W. 1970 . The energy balance of the global atmosphere . In: The Global Circulation of the Atmosphere (ed. G. A. Corby ). Roy. Met. Soc ., London , 42 – 90 .  

  24. Oort , A. H. 1964 . On estimates of the atmospheric energy cycle . Mon. Wea. Rev . 92 , 483 – 493 .  

  25. Oort , A. H. 1983 . Global Atmospheric Circulation Statistics, 1958-1973 , Volume 14 : NOAA Professional Paper. U.S. Department of Commerce/NOAA , 180 .  

  26. Oort , A. H. and PeixOto , J. P. 1983 . Global angular momentum and energy balance requirements from observations . Adv. Geophys 25 , 355 – 490 .  

  27. Oort , A. H. and Rasmusson , E. M. 1971 . Atmospheric Circulation Statis-tics , Volume 5: NOAA Professional Paper. U.S. Department of Com-merce/NOAA , 323 .  

  28. Peixóto , J. P. and Oort , A. H. 1992 . Physics of Climate , American Institute of Physics, New York, 520.  

  29. Ritchie , H. , Temperton , C. , Simmons , A. , Hortal , M. , Davies , T. , and co-authors . 1995 . Implementation of the semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev . 123 , 489 - 514 .  

  30. Rosen , R. D. 1999 . The global energy cycle. In: Global Energy and Water Cycles (eds K. A. Browning and R. J. Gurney ). Chapter 1.1 , Cambridge University Press , Cambridge , 1 - 9 .  

  31. Siegmund , P. 1994 . The generation of available potential energy, accord-ing to Lorenz’ exact and approximate equations . Tellus 46A , 566 – 582 .  

  32. Simmons , A. J. and Burridge , D. M. 1981 . An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates . Mon. Wea. Rev . 109 , 758 – 766 .  

  33. Stull , R. B. 1988 . An Introduction to Boundary Layer Meteorol-ogy . Atmospheric Sciences Library. Kluwer Academic Publishers , Dordrecht , 666 .  

  34. Uppala , S. M. , Milberg , P. W. , Simmons , A. J. , Andrae , U., da Costa Bechtold , V. , and co-authors . 2005. The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc . 131 , 2961 - 3012 .  

  35. van Mieghem , J. 1973 . Atmospheric Energetics, Oxford Monogr . on Meteorology. Clarendon Press , Oxford , 306 .  

  36. Yanai , M. and Johnson , R. H. 1993 . Impacts of cumulus convection on thermodynamic fields. In: The Representation of Cumulus Convection in Numerical Models (eds K. A. Emanuel and D. J. Raymond ). Volume 24: Meteorological Monographs, American Meteorological Society, Boston, Massachusetts, 39 - 62 .  

comments powered by Disqus