Start Submission Become a Reviewer

Reading: Subjective versus objective sensitivity estimates: application to a North African cyclogenesis

Download

A- A+
Alt. Display

Original Research Papers

Subjective versus objective sensitivity estimates: application to a North African cyclogenesis

Authors:

Victor Homar ,

Edif. Mateu Orfila, Universitat de les Illes Balears. Palma de Mallorca, E-07122, ES
X close

David J. Stensrud

NOAA/National Severe Storms Laboratory, Norman, OK, US
X close

Abstract

An observing system simulation experiment is used to test and compare objective and subjective estimates of sensitivity of a forecast aspect to the initial condition (IC) fields for a case of rapidly developing cyclogenesis over the Western Mediterranean during 19–22 December 1979. The ability of sensitivity estimation methods to provide helpful guidance about where an improvement in the IC can lead to the largest forecast error reduction is particularly important to ascertain in order to guide adaptive observation campaigns.

Synthetic soundings from a 15-km reference simulation are added to an initially poor 60-km control simulation over the sensitive areas as determined by the combination of the given sensitivity estimate and a simple analysis error estimate. The ability of each sensitivity estimation method to produce an improved simulation of the cyclone is assessed.

Results show that while the sensitivity estimates perform similarly, with no significant differences among them, the subjective method yields the best overall targeting guidance. In contrast, the adjoint estimate provides the least accurate targeting guidance for this particular case and analysis error estimate. This suggests that subjective sensitivity estimation methods are able to compete with or even improve upon the objective estimation method for this case of cyclogenesis over the Western Mediterranean.

How to Cite: Homar, V. and Stensrud, D.J., 2008. Subjective versus objective sensitivity estimates: application to a North African cyclogenesis. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.1064–1078. DOI: http://doi.org/10.1111/j.1600-0870.2008.00353.x
  Published on 01 Jan 2008
 Accepted on 1 Jul 2008            Submitted on 18 Jul 2007

References

  1. Ancell , B. and Hakim , G. J. 2007a . Comparing adjoint-and ensemble-sensitivity analysis with applications to observation targeting. Mon. Wea. Re v . 135 , 4117 – 4134 .  

  2. Ancell , B. C. and Hakim , G. J. 2007b . Interpreting adjoint and ensemble sensitivity toward the development of optimal observation targeting strategies . Meteorol. Z . 16 , 635 – 642 .  

  3. Badger , J. and Hoskins , B. 2001 . Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sc i . 58 , 38 – 49 .  

  4. Baker , N. L. and Daley , R. 2000 . Observation and background adjoint sensitivity in the adaptive observation targeting problem . Q. J. R. MeteoroL Soc . 126 , 1431 – 1454 .  

  5. Bao , J.-W. and Kuo , Y.-H. 1995 . On-off switches in the adjoint method: step functions. Mon. Wea. Re v . 123 , 1589 – 1594 .  

  6. Barker , D. M. , Huang , W. , Guo , Y. R. , Bourgeois , A. and Xiao , Q. N. 2004 . A three-dimensional variational data assimilation system for MM5: implementation and initial results. Mon. Wea. Re v . 132 , 897 – 914 .  

  7. Benjamin , S. G. 1983 . Some Effects of Heating and Topography on the Regional Severe Storm Environment . 265 pp . [ Available from University Microfil, 300 N. Zeeb Rd., P.O. Box 1346, Ann Arbor, MI 46801-13461, Ph.D. Thesis, The Pennsylvania State University .  

  8. Berliner , L. M. , Lu , Z.-Q. and Snyder , C. 1999 . Statistical design for adaptive weather observations. J. Atmos. Sc i . 56 , 2536 – 2552 .  

  9. Bishop , C. , Etherton , B. and Majumdar , S. 2001 . Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Wea. Re v . 129 , 420 – 436 .  

  10. Burpee , R. W. , Marks , D. G. and Merrill , R. T. 1984 . An assessment of Omega dropwindsonde data in track forecasts of Hurricane Debby (1982) . Bull. Amer Meteor. Soc . 65 , 1050 – 1058 .  

  11. Carlson , T. N. 1991 . Mid-Latitude Weather Systems . HarperCollins , London , 507 pp .  

  12. Daley , R. 1991 . Atmospheric Data Analysis . Cambridge University Press , London , 457 pp .  

  13. Doerenbecher , A. and Bergot , T. 2001 . Sensitivity to observations ap-plied to fastex cases . Nonlin. Proc. Geophys . 8 , 467 – 481 .  

  14. Dudhia , J. 1989 . Numerical study of convection observed during the win-ter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sc i . 46 , 3077 – 3107 .  

  15. Dudhia , J. , Gill , D. , Guo , Y.-R. , Manning , K. , Bourgeois , A. and co-authors. 2002 . PSU/NCAR Mesoscale Modeling System: Tutorial Class notes and User’s Guide: MM5 Modeling System Version 3. Available from NCAR. Boulder, USA .  

  16. Emanuel , K. A. , Raymont , D. , Betts , A. , Bosart , L. , Bretherton , C. and co-authors . 1995 . Report of the first prospectus development team of the U.S. weather research program to NOAA and the NSF. Bull. Amer Meteor Soc . 76 , 1194-120 8 .  

  17. Errico , R. M. 1997 . What is an adjoint model? Bull. Amer. Meteor. Soc . 78 , 2577 – 2591 .  

  18. Errico , R. M. and Raeder , K. D. 1999 . An examination of the accuracy of the linearization of a mesoscale model with moist physics . Q. J. R. MeteoroL Soc . 125 , 169 – 195 .  

  19. Errico , R. M. , Vulciéevié , T. and Raeder , K. 1993 . Examination of the accuracy of a tangent linear model . Tellus 45A , 462 – 477 .  

  20. Fritsch , J. , Hilliker , J. , Ross , J. and Vislocky , R. 2000 . Model consensus . Wea. Forecast . 15 , 571 – 582 .  

  21. Gelaro , R. , Buizza , R. , Palmer , T. N. and Klinker , E. 1998 . Sensitivity analysis of forecast errors and the construction of optimal perturba-tions using singular vectors. J. Atmos. Sc i . 55 , 1012 – 1037 .  

  22. Gelaro , R. , Langland , R. H. , Rohaly , G. D. and Rosmond , T. E. 1999 . An assessment of singular-vector approach to targeted observing using the fastex dataset. Q. J. R. MeteomL Soc. 125 , 3299 - 3327 .  

  23. Gelaro , R. , Reynolds , C. A. , Langland , R. H. and Rohaly , G. D. 2000 . A predictability study using geostationary satellite wind observations during NORPEX. Mon. Wea. Re v . 128 , 3789 – 3807 .  

  24. Gilmour , I. , Smith , L. A. and Buizza , R. 2001 . Linear regime duration: is 24 hours a long time in synoptic weather forecasting? J. Atmos. Sc i . 58 , 3525 – 3539 .  

  25. Grell , G. A. , Dudhia , J. and Stauffer , D. R. 1994 . A description of the fifth-generation Penn State/NCAR mesoscale model (MM5) . NCAR Tech. Note NCAR/TN-398±STR.  

  26. Hakim , G. J. and Torn , R. D. 2008 . Sanders Symposium Monograph Volume 55 of Meteorological Monographs, chap. Ensemble synoptic analysis. Amer. Meteor. Soc.  

  27. Homar , V. , Ramis , C. and Alonso , S. 2002 . A deep cyclone of african origin over the western mediterranean: diagnosis and numerical sim-ulation . Ann. Geophys . 20 , 93 – 106 .  

  28. Homar , V. and Stensrud , D. J. 2004 . Sensitivities of an intense mediter-ranean cyclone: analysis and validation . Q. J. R. Meteorol. Soc . 130 , 2519 – 2540 .  

  29. Hong , S. Y. and Pan , H. L. 1996 . Nonlocal boundary layer vertical diffusion in a medium-range forecast model . Mon. Wea. Rev . 124 , 2322 – 2339 .  

  30. Jansà , A. , Genoves , A. , Picornell , M. A. , Campins , J. , Riosalido , R. and co-authors. 2001 . Western Mediterranean cyclones and heavy rain . Meteorol. AppL 8 , 43 - 56 .  

  31. Kain , J. S. 2002 . The lcain-fritsch convective parameterization: an update . J. AppL Meteorol . 43 , 170 – 181 .  

  32. Kain , J. S. and Fritsch , J. M. 1993 . Convective parameterization for mesoscale models: the lcain-fritsch scheme. In: The Representation of Cumulus Convection in Numerical Models (eds. K. A. Emanuel and D. J. Raymond ). Amer. Meteor. Soc p. 246.  

  33. Langland , R. H. and Baker , N. L. 2004 . Estimation of observation im-pact using the NRL atmospheric variational data assimilation adjoint system . Tellus 56A , 189 – 201 .  

  34. Langland , R. H. , Elsberry , R. and Errico , R. M. 1995 . Evaluation of physical processes in an idealized extratropical cyclone using adjoint sensitivity. Q. J. R. Meteorol. Soc . 121 , 1349 - 1386 .  

  35. Langland , R. H. , Gelaro , R. , Rohaly , G. D. and Shapiro , M. 1999a . Targeted observations in fastex: adjoint-based targeting procedures and data impact experiments in iop17 and iop18 . Q. J. R. Meteorol. Soc . 125 , 3241 - 3270 .  

  36. Langland , R. H. , Toth , Z. , Gelaro , R. , Szunyogh , I. , Shapiro , M. and co-authors. 1999b . The north pacific experiment (NORPEX-98): targeted observations for improved north american weather forecasts. Bull. Amer Meteor Soc . 80 , 1363 - 1384 .  

  37. Lewis , J. M. , Raeder , K. D. and Errico , R. M. 2001 . Vapor flux associated with return flow over the gulf of mexico: a sensitivity study using adjoint modeling . Tellus 53A , 74 – 93 .  

  38. Lord , S. J. 1996 . The impact on synoptic-scale forecasts over the united states of dropwindsonde observations taken in the northeast pacific. In: I I th Conf on Numerical Weather Prediction] , Amer. Meteorol. Soc , Norfolk, VA, USA , 107 - 111 .  

  39. Majumdar , S. J. , Aberson , S. D. , Bishop , C. H. , Buizza , R. , Peng , M. S. and co-authors . 2006. A comparison of adaptive observing guidance for atlantic tropical cyclones. Mon. Wea. Rev . 134 , 2354 - 2372.  

  40. Morss , R. E. and Emanuel , K. A. 2002 . Influence of added observations on analysis and forecast errors: results from idealized systems. Q. J. R. Meteorol. Soc . 128 , 285 - 321 .  

  41. Morss , R. E. , Emanuel , K. A. and Snyder , C. 2001 . Idealized adaptive observation strategies for improving numerical weather prediction . J. Atmos. Sci . 58 , 210 – 232 .  

  42. Park , S. K. and Droegemeier , K. K. 1997 . Validity of the tangent linear approximation in a moist convective cloud model . Mon. Wea. Rev . 125 , 3320 – 3340 .  

  43. Pu , Z.-X. , Kalnay , E. , Sela , J. and Szunyogh , I. 1997 . Sensitivity of forecast error to initial conditions with a quasi-inverse linear method . Mon. Wea. Rev . 125 , 2479 – 2503 .  

  44. Ramis , C. , Romero , R. , Homar , V , Alonso , S. and Alardin , M. 1998 . Diagnosis and numerical simulation of a torrential precipitation event in Catalonia (Spain) . Meteorol. Atmos. Phys . 69 , 1 – 21 .  

  45. Reisner , J. , Rasmussen , R. J. and Bruintjes , R. T. 1998 . Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model . Q. J. R. Meteorol. Soc . 124B , 1071 – 1107 .  

  46. Reynolds , C. A. , Peng , M. S. , Majumdar , S. J. , Aberson , S. D. , Bishop , C. H. and co-authors . 2007. Interpretation of adaptive observing guidance for atlantic tropical cyclones. Mon. Wea. Rev . 135 , 4006 - 4029 .  

  47. Romero , R. 2001 . Sensitivity of a heavy rain producing western mediter-ranean cyclone to embedded potential voracity anomalies . Q. J. R. Meteorol. Soc . 127 , 2559 – 2597 .  

  48. Sanders , F. and Gyakum , J. 1980 . Synoptic-dynamic climatology of the “Bomb” . Mon. Wea. Rev . 108 , 1589 – 1606 .  

  49. Stein , U. and Alpert , P. 1993 . Factor separation in numerical simulations . J. Atmos. Sci . 50 , 2107 – 2115 .  

  50. Stensrud , D. J. and Fritsch , J. M. 1994 . Mesoscale convective systems in weakly forced large-scale environments. Part BI: numerical simu-lations and implications for operational forecasting . Mon. Wea. Rev . 122 , 2084 – 2104 .  

  51. Szunyogh , I. , Toth , Z. , Emanuel , K. A. , Bishop , C. H. , Snyder , C. and co-authors. 1999 . Ensemble-based targeting experiments during fastex: the effect of dropsonde data from the lear jet. Q. J. R. Meteorol. Soc . 125 , 3189 - 3217 .  

  52. Toth , Z. and Kalnay , E. 1997 . Ensemble forecasting at NCEP and the breeding method . Mon. Wea. Rev . 125 , 3297 – 3319 .  

  53. Toth , Z. , Szunyogh , I. , Bishop , C. , Majumdar , S. , Morss , R. and co-authors . 2002. Adaptive observations at NCEP: past, present, and future. In: Symposium on Observations, Data Assimilation, and Prob-abililstic Prediction. Orlando, FL.  

  54. Truscott , B. and Richardson , D. 2003 . Atlantic THORPEX Observing System Test Project Plan. EUCOS/SP/105.  

  55. Weissmann , M. , Busen , R. , Dörnbrack , A. , Rahm , S. and Reitebuch , O. 2005 . Targeted observations with an airborne wind lidar. J. Atmos. Oceanic Technol 22 ( 11 ), 1706 - 1719 .  

  56. Xu , Q. 1996 . Generalized adjoint for physical processes with parame-terized discontinuities. Part I: basic issues and heuristic examples . J. Atmos. Sci . 53 , 1123 – 1142 .  

  57. Zou , X. , Huang , W. and Xiao , Q. 1998 . A User’s Guide to the MM5 Adjoint Modeling System . NCAR Tech. Note NCAR/TN-437±IA.  

  58. Zou , X. , Vandenberghe , F. , Pondeca , M. and Kuo , Y.-H. 1997 . Introduction to Adjoint Techniques and the MM5 Adjoint Modeling System. NCAR Tech. Note NCAR/TN-435±IA .  

comments powered by Disqus