Start Submission Become a Reviewer

Reading: Local eigenvalue analysis of CMIP3 climate model errors

Download

A- A+
Alt. Display

Original Research Papers

Local eigenvalue analysis of CMIP3 climate model errors

Authors:

Mikyoung Jun ,

Department of Statistics, 3143 TAMU, College Station, TX, US
X close

Reto Knutti,

Institute for Atmospheric and Climate Science, ETH Zurich, CH
X close

Douglas W. Nychka

National Center for Atmospheric Research, PO Box 3000, Boulder, CO, US
X close

Abstract

Of the two dozen or so global atmosphere—ocean general circulation models (AOGCMs), many share parameterizations, components or numerical schemes, and several are developed by the same institutions. Thus it is natural to suspect that some of the AOGCMs have correlated error patterns. Here we present a local eigenvalue analysis for the AOGCM errors based on statistically quantified correlation matrices for these errors. Our statistical method enables us to assess the significance of the result based on the simulated data under the assumption that all AOGCMs are independent. The result reveals interesting local features of the dependence structure of AOGCM errors. At least for the variable and the timescale considered here, the Coupled Model Intercomparison Project phase 3 (CMIP3) model archive cannot be treated as a collection of independent models.We use multidimensional scaling to visualize the similarity of AOGCMs and all-subsets regression to provide subsets of AOGCMs that are the best approximation to the variation among the full set of models.

How to Cite: Jun, M., Knutti, R. and Nychka, D.W., 2008. Local eigenvalue analysis of CMIP3 climate model errors. Tellus A: Dynamic Meteorology and Oceanography, 60(5), pp.992–1000. DOI: http://doi.org/10.1111/j.1600-0870.2008.00356.x
1
Views
  Published on 01 Jan 2008
 Accepted on 24 Jun 2008            Submitted on 20 Dec 2007

References

  1. Cox , T. E and Cox , M. A. A. 2001 . Multidimensional Scaling 2nd Edition . Chapman & Hall/CRC Boca Raton, London, New York , Washington , D.C .  

  2. Furrer , R. , Sain , S. R. , Nychlca , D. W. and Meehl , G. A. 2007 . Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett . 34 , https://doi.org/10.1029/2006GL027754)  

  3. Jones , P. D. , New , M. , Parker , D. E. , Martin , S. and Rigor , I. G. 1999 . Surface air temperature and its variations over the last 150 years . Rev. Geophys . 37 , 173 – 199 .  

  4. Jong , J.-C. and Kotz , S. 1999 . On a relation between principal compo-nents and regression analysis . Am. Stat . 53 , 349 – 351 .  

  5. Jun , M. , Knutti , R. and Nychlca , D. W. 2008 . Spatial analysis to quantify numerical model bias and dependence: how many climate models are there? J. Am. Stat. Assoc . in press .  

  6. Lambert , S. J. and Boer , G. J. 2001 . CM1P1 evaluation and intercom-parison of coupled climate models . Clim. Dyn . 17 , 83 – 106 .  

  7. Meehl , G. A. , Covey , C. , Delworth , T. , Latif , M. , McAvaney , B. and co-authors. 2007a. The WCRP CMIP3 multimodel dataset: a new era in climate change research . Bull. Ame. MeteoroL Soc . 88 , 1383 - 1394 .  

  8. Meehl , G. A. , Stocker , T. F. , Collins , W. D. , Friedlingstein , P. , Gaye , A. T. and co-authors. 2007b . Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (eds. S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis , and co-editors ). Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA .  

  9. Rayner , N. A. , Brohan , P. , Parker , D. E., Folland , C. K. , Kennedy , J. J. , and co-authors . 2006 . Improved analyses of changes and uncertain-ties in marine temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset . J. Clim . 19 , 446 - 469 .  

  10. Tebaldi , C. , Smith , R. L. , Nychlca , D. W. and Means , L 0.. 2005 . Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J. Clim . 18 , 1524 - 1540 .  

  11. Torgerson , W. S. 1952 . Multidimensional scaling, 1: theory and methods . Psychometrika 17 , 401 – 419 .  

  12. Young , G. and Householder , A. S. 1938 . Discussion of a set of points in terms of their mutual distances . Psychometrika 3 , 19 – 22 .  

comments powered by Disqus