Start Submission Become a Reviewer

Reading: Doppler radar radial winds in HIRLAM. Part I: observation modelling and validation

Download

A- A+
Alt. Display

Original Research Papers

Doppler radar radial winds in HIRLAM. Part I: observation modelling and validation

Authors:

H. Järvinen,

Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, FI
X close

K. Salonen ,

Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, FI
X close

M. Lindskog,

Swedish Meteorological and Hydrological Institute, Norrköping, SE
X close

A. Huuskonen,

Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, FI
X close

S. Niemelä,

Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, FI
X close

R. Eresmaa

Finnish Meteorological Institute, P.O. Box 503, FI-00101, Helsinki, FI
X close

Abstract

An observation operator for Doppler radar radial wind measurements is developed further in this article, based on the earlier work and considerations of the measurement characteristic. The elementary observation operator treats radar observations as point measurements at pre-processed observation heights. Here, modelling of the radar pulse volume broadening in vertical and the radar pulse path bending due to refraction is included to improve the realism of the observation modelling.

The operator is implemented into the High Resolution Limited Area Model (HIRLAM) limited area numerical weather prediction (NWP) system. A data set of circa 133 000 radial wind measurements is passively monitored against theHIRLAM six-hourly background values in a 1-month experiment.No data assimilation experiments are performed at this stage. A new finding is that the improved modelling reduces the mean observation minus background (OmB) vector wind difference at ranges below 55 km, and the standard deviation of the radial wind OmB difference at ranges over 25 km.

In conclusion, a more accurate and still computationally feasible observation operator is developed. The companion paper (Part II) considers optimal super-observation processing of Doppler radar radial winds for HIRLAM, with general applicability in NWP.

How to Cite: Järvinen, H., Salonen, K., Lindskog, M., Huuskonen, A., Niemelä, S. and Eresmaa, R., 2009. Doppler radar radial winds in HIRLAM. Part I: observation modelling and validation. Tellus A: Dynamic Meteorology and Oceanography, 61(2), pp.278–287. DOI: http://doi.org/10.1111/j.1600-0870.2008.00380.x
  Published on 01 Jan 2009
 Accepted on 5 Nov 2008            Submitted on 5 Nov 2007

References

  1. Browning , K. A. and Wexler , R. 1968 . The determination of kinematic properties of a wind field using Doppler radar . J. Appl. Meteorol . 7 , 105 – 113 .  

  2. Caumont , J. , Wattrelot , E. , Ducrocq , V. , Jaubert , G. and Bouttier , E 2006 . First results of 1D+3DVAR assimilation of radar reflectivities . In: Proceedings of the Fourth European Conference on Radar Meteorology and Hydrology , Barcelona , Spain , 539 – 542 .  

  3. Dazhang , T. , Geotis , S. G. , Passarelli , R. E. Jr. , Hansen , A. L. and Frush , C. L. 1984 . Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. In: Proceedings of 22d Conf on Radar Meteorology , Zurich, Switzerland, Am. Meteorol. Soc. (preprints ), 523 - 527 .  

  4. Doviak , R. J. and Zrnié , D. S. 1993 . Doppler Radar and Weather Ob-servations 2nd edition. San Diego Academic Press , Inc ., San Diego , 567 pp .  

  5. Efron , B. 1982 . The Jackknife, the Bootstrap and Other Resampling Plans . Society for Industrial and Applied Mathematics , Providence , RI, 97 pp .  

  6. Efron , B. and Gong , G. 1983 . A leisurely look at the bootstrap, the jackknife, and cross-validation. J. Am. Stat.1 Assoc . 37 , 36 - 48 .  

  7. Eresmaa , R. and Järvinen , H. 2006 . An observation operator for ground-based GPS slant delays . Tellus 58A , 131 – 140 .  

  8. Eyre , J. R. 1990 . Progress on direct use of satellite sounding radiances in numerical weather prediction. In: Proceedings of WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography (preprints), WMO, Clermont-Ferrand, France, 9-13 July 1990 Report , 117 - 121 .  

  9. Gustafsson , N. , Berre , L. , Hörnquist , S. , Huang , X.-Y. , Lindskog , M. and co-authors. 2001. Three-dimensional variational data assimilation for a limited area model, part I: general formulation and the background error constraint . Tellus 53A , 425 - 446 .  

  10. Haase , G. and Landelius , T. 2004 . Dealiasing of Doppler radar velocities using a torus mapping . J. Atmos. Oceanic TechnoL 21 , 1566 – 1573 .  

  11. Kalnay , E. 2003 . Atmospheric Modeling, Data Assimilation and Predictability . Cambridge University Press , United Kingdom , 341 pp .  

  12. Lehtinen , M. and Huuskonen , A. 1996 . General incoherent scatter analysis and GUISDAP . J. Atmos. Terr Phys . 58 , 435 – 452 .  

  13. Lhermitte , R. M. and Atlas , D. 1961 . Precipitation motion by pulse Doppler radar. In: Proceedings of the 9th Weather Radar Conference , Kansas City, 23-26 October 1961 , Am. Meteorol. Soc ., Kansas City, Missouri , USA , 218 - 223 .  

  14. Lindskog , M. , Järvinen , H. and Michelson , D. B. 2000 . Assimilation of radar radial winds in the HIRLAM 3D-Var . Phys. Chem. Earth (B) 25 , 1243 – 1249 .  

  15. Lindskog , M. , Gustafsson , N. , Navascues , B. , Mogensen , K. S. , Huang , X.-Y. and co-authors. 2001. Three-dimensional varia-tional data assimilation for a limited area model, part II: ob-servation handling and assimilation experiments . Tellus 53 , 447 - 468 .  

  16. Lindskog , M. , Salonen , K. , Järvinen , H. and Michelson , D. B. 2004 . Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Wea. Re v . 132 , 1081 – 1092 .  

  17. Marshal , J. S. and Palmer , M. K. 1948 . The distribution of raindrops with size . J. Meteorol . 5 , 165 – 166 .  

  18. Pirttilä , J. , Lehtinen , M. S. , Huuskonen , A. and MarIcicanen , M. 2005 . A proposed solution to the range-Doppler dilemma of weather radar measurements by uthe SMPRF codes, practical results, and a com-parison with operational measurements . J. Appl. Meteorol . 44 , 1375 – 1390 .  

  19. Probert-Jones , J. R. 1962 . The radar equation in meteorology . Quart. J. R. Meteorol. Soc . 88 , 485 – 495 .  

  20. Ray , P. and Ziegler , C. 1977 . De-aliasing first moment Doppler estimates . J. Appl. Meteorol . 16 , 563 – 564 .  

  21. Rihan , F. , Collier , C. and Roulstone , I. 2005 . Four-dimensional varia-tional data assimilation for Doppler radar wind data . J. Comput. Appl. Math . 176 , 15 – 34 .  

  22. Salonen , K. , Järvinen , H. and Lindskog , M. 2003 . Model for Doppler radar radial winds. In: Proceedings of 31st Conf on Radar Meteo-rology Volume 1, Seattle, WA, Am. Meteorol. Soc. (preprints), 142 - 145 .  

  23. Salonen , K. , Järvinen , H. , Eresmaa , R. and Niemeld , S. 2007 . Bias estimation of Doppler-radar radial-wind observations . Quart. J. R. Meteorol. Soc . 133 , 1501 – 1507 .  

  24. Seko , H. , Kawabata , T. , Tsuyuki , T. , Nakamura , H. , Koizumi , K. and co-authors. 2004. Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation . J. Meteorol. Soc. Jpn . 82 , 473 - 489 .  

  25. Sirmans , D. , Zrnié , D. and Bumgarner , B. 1976 . Extension of maximum unambiguous Doppler velocity by use of two sampling rates. In: Proceedings of 17th Conf on Radar Meteorology , Seattle, WA, Am. Meteorol. Soc. (preprints) , 22 - 28 .  

  26. Sun , J. and Crook , N. A. 1997 . Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint, part I: model development and simulated data experiments. J. Atmos. Sc i . 54 , 1642 – 1661 .  

  27. Undén , R , Rontu , L. , Järvinen , H. , Lynch , P. , Calvo , J. and co-authors. 2002. HIRLAM-5 Scientific Documentation. SMHI, Norrkoping, Sweden , 144 pp .  

  28. Vedel , H. and Huang , X.-Y. 2004 . Impact of ground based GPS data on numerical weather prediction . J. Meteorol. Soc. Jpn . 82 , 459 – 472 .  

  29. Waldteufel , P. and Corbin , H. 1979 . On the analysis of single Doppler data . J. Appl. Meteorol . 18 , 532 – 542 .  

  30. Yang , X. 2007 . Status of the HIRLAM reference system. HIRLAM Newslett . 52 , 172-175. KNMI , De Bilt , The Netherlands. Available at http://hirlam.org/open/publications/NewsLetters .  

comments powered by Disqus