Start Submission Become a Reviewer

Reading: On resonant Rossby–Haurwitz triads

Download

A- A+
Alt. Display

Original Research Papers

On resonant Rossby–Haurwitz triads

Author:

Peter Lynch

Meteorology & Climate Centre, School of Mathematical Sciences, UCD, Belfield, Dublin 4, IE
X close

Abstract

The dynamics of non-divergent flow on a rotating sphere are described by the conservation of absolute vorticity. The analytical study of the non-linear barotropic vorticity equation is greatly facilitated by the expansion of the solution in spherical harmonics and truncation at low order. The normal modes are the well-known Rossby—Haurwitz (RH) waves, which represent the natural oscillations of the system. Triads of RH waves, which satisfy conditions for resonance, are of critical importance for the distribution of energy in the atmosphere.

We show how non-linear interactions of resonant RH triads may result in dynamic instability of large-scale components. We also demonstrate a mathematical equivalence between the equations for an orographically forced triad and a simple mechanical system, the forced-damped swinging spring. This equivalence yields insight concerning the bounded response to a constant forcing in the absence of damping. An examination of triad interactions in atmospheric reanalysis data would be of great interest.

How to Cite: Lynch, P., 2009. On resonant Rossby–Haurwitz triads. Tellus A: Dynamic Meteorology and Oceanography, 61(3), pp.438–445. DOI: http://doi.org/10.1111/j.1600-0870.2008.00395.x
  Published on 01 Jan 2009
 Accepted on 23 Jan 2009            Submitted on 21 Aug 2008

References

  1. Baines , P. G. 1976 . The stability of planetary waves on a sphere . J. Fluid Mech . 73 , 193 – 213 .  

  2. Burzlaff , J. , DeLoughry , E. and Lynch , P. 2008 . Generation of zonal flow by resonant Rossby-Haurwitz wave interactions . Geophys. Astro. Fluid Dyn . 102 , 165 – 177 .  

  3. Charney , J. G. , Fjortoft , R. and von Neumann , J. 1950 . Numeri-cal integration of the barotropic voracity equation . Tellus 2 , 237 – 254 .  

  4. Chen , Q. , Chen , S. , Eyink , G. L. and Holm , D. D. 2005 . Resonant interactions in rotating homogeneous three-dimensional turbulence . J. Fluid. Mech . 542 , 139 – 164 .  

  5. Craig , R. A. 1945 . A solution of the nonlinear voracity equation for atmospheric motion . J. Meteorol . 2 , 175 – 178 .  

  6. Craik , A. D. D. 1985 . Wave Interactions and Fluid Flows . Cambridge University Press , Cambridge . 322 pp .  

  7. Eliasen , E. , Machenhauer , B. and Rasmussen , E. 1970 . On a nu-merical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields, Techni-cal Report 2, Department of Meteorology, Copenhagen University, 35 pp .  

  8. Ellsaesser , H. W. 1966 . Evaluation of spectral versus grid methods of hemispheric numerical weather prediction . J. AppL Meteorol . 5 , 246 – 262 .  

  9. Fjørtoft , R. 1953 . On the changes in the spectral distribution of ki-netic energy in two-dimensional, non-divergent flow . Tellus 5 , 225 – 230 .  

  10. Gill , A. E. 1974 . The stability of planetary waves on an infinite beta-plane . Geophys. Fluid Dyn . 6 , 29 – 47 .  

  11. Haurwitz , B. 1940 . The motion of atmospheric disturbances on the spherical earth . J. Mar Res . 3 , 254 – 267 .  

  12. Hobson , E. W. 1931 . The Theory of Spherical and Ellipsoidal Harmon-ics . Cambridge University Press , Cambridge . 500 pp .  

  13. Holm , D. and Lynch , P. 2002 . Stepwise precession of the resonant swing-ing spring. SIAM J. AppL Dyn. Sys . 1 , 44 - 64 .  

  14. Holton , J. R. and Mass , C. 1976 . Stratospheric vacillation cycles . J. Atmos. Sci . 33 , 2218 – 2225 .  

  15. Hoskins , B. J. 1973 . Stability of the Rossby-Haurwitz wave . Q. J. R. Meteorol. Soc . 99 , 723 – 745 .  

  16. José , J. V. and Saletan , E. J. 1998 . Classical Dynamics: A Contemporary Approach . Cambridge University Press , Cambridge . 670 pp .  

  17. Kartashova , E. and L’vov , V. S. 2007. Model of intrasea-sonal oscillations in earth’s atmosphere. Phys. Rev. Lett . 98 , doi: https://doi.org/10.1103/PhysRevLett.98.198501 .  

  18. Longuet-Higgins , M. S. 1968 . The eigenfunctions of Laplace’s tidal equations over a sphere. Phil. Trans. Roy. Soc ., London A 262 , 511 – 607 .  

  19. Lorenz , E. N. 1960 . Maximum simplification of the dynamic equations . Tellus 12 , 243 – 254 .  

  20. Lorenz , E. N. 1972 . Barotropic instability of Rossby wave motion . J. Atmos. Sci . 29 , 258 – 269 .  

  21. Lynch , P. 2003 . Resonant Rossby wave triads and the swinging spring . Bull. Am. Meteorol. Soc . 84 , 605 – 616 .  

  22. Lynch , P. and Houghton , C. 2004 . Pulsation and precession of the reso-nant swinging spring . Physica D 190 , 38 – 62 .  

  23. Machenhauer , B. 1979 . The spectral method, Numerical Methods Used in Atmospheric Models Volume II . WMO/GARP Publ. Ser. 17, WMO , 121 – 275 .  

  24. Miles , J. 1985 . Resonantly forced Rossby waves . J. Phys. Oceanogr 15 , 467 – 474 .  

  25. Neamtan , S. M. 1946 . The motion of harmonic waves in the atmosphere . J. Meteorol . 3 , 53 – 56 .  

  26. Newell , A. C. , Nazarenko , S. and Biven , L. 2001 . Wave turbulence and intermittency. Physica D 152 – 153 , 520-550 .  

  27. Orszag , S. A. 1970 . Transform method for calculation of vector-coupled sums: application to the spectral form of the voracity equation . J. Atmos. Sci . 27 , 890 – 895 .  

  28. Orszag , S. A. 1974 . Fourier series on spheres . Mon. Wea. Rev . 102 , 56 – 75 .  

  29. Pedlosky , J. 1987 . Geophysical Fluid Dynamics 2nd Edition . Springer, Berlin . 710 pp .  

  30. Platzman , G. W. 1960 . The spectral form of the voracity equation . J. Atmos. Sci . 17 , 635 – 644 .  

  31. Platzman , G. W. 1962 . The analytical dynamics of the spectral voracity equation . J. Atmos. Sci . 19 , 313 – 328 .  

  32. Reznilc , G. M. , Piterbarg , L. I. and Kartashova , E. A. 1993 . Nonlinear interactions of spherical Rossby modes . Dyn. Atmos. Oceans 18 , 235 – 252 .  

  33. Rossby , C.-G. et al 1939 . Relations between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action . J. Mar Res . 2 , 38 – 55 .  

  34. Silberman , I. 1954 . Planetary waves in the atmosphere . J. Meteorol . 11 , 27 – 34 .  

  35. Thuburn , J. and Li , Y. 2000 . Numerical simulation of Rossby-Haurwitz waves . Tellus 52A , 181 – 189 .  

comments powered by Disqus