Start Submission Become a Reviewer

Reading: Comparison of retrospective optimal interpolation with four-dimensional variational assimila...

Download

A- A+
Alt. Display

Original Research Papers

Comparison of retrospective optimal interpolation with four-dimensional variational assimilation

Authors:

Hyo-Jong Song,

School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, KR
X close

Gyu-Ho Lim ,

School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, KR
X close

Dong-In Lee,

Department of Environmental Atmospheric Sciences, Pukyong National University, Busan 606-739, KR
X close

Hee-Sang Lee

Forecast Research Laboratory, National Institute of Meteorological Research, Seoul 156-720, KR
X close

Abstract

We propose a retrospective optimal interpolation (ROI) system that is derived from the quasi-static variational assimilation (QSVA) algorithm. Even when the four-dimensional variational assimilation (4D-Var) may fail to find the global minimum of a cost function because the function has multiple minima, ROI is shown to find this minimum. However, ROI’s ability to overcome the multiple minima problem depends on the observation time interval over the analysis window. Using the perturbation method, we can implement ROI without using an adjoint model, which is required by QSVA. For cost-effective implementation, we developed a reduced-rank formulation of ROI, based on the accuracy-saturation property.

From numerical experiments using the Lorenz three-variable model, we show that ROI finds the global minimum of the cost function even when the 4D-Var analysis is trapped in a local minimum. From experiments with the Lorenz 40-variable model, we confirm that the reduced-rank formulation becomes demonstrably cost-effective as the analysis window expands. Finally, we demonstrate a possible loss of efficiency of ROI with implications for future research.

How to Cite: Song, H.-J., Lim, G.-H., Lee, D.-I. and Lee, H.-S., 2009. Comparison of retrospective optimal interpolation with four-dimensional variational assimilation. Tellus A: Dynamic Meteorology and Oceanography, 61(3), pp.428–437. DOI: http://doi.org/10.1111/j.1600-0870.2008.00396.x
  Published on 01 Jan 2009
 Accepted on 23 Jan 2009            Submitted on 4 Feb 2008

References

  1. Cohn , S. E. , Sivalcumaran , N. S. and Todling , R. 1994 . A fixed-lag Kalman smoother for retrospective data assimilation . Mon. Wea. Rev . 122 , 2838 – 2867 .  

  2. Errico , R. M. 2003 . The workshop on applications of adjoint models in dynamic meteorology . Bull. Amer Meteorol. Soc . 84 , 795 – 798 .  

  3. Errico , R. M. and Raeder , K. D. 1999 . An examination of the accuracy of the linearization of a mesoscale model with moist physics . Q. J. R. Meteorol. Soc . 125 , 169 – 195 .  

  4. Fertig , E. J. , Harlim , J. and Hunt , B. R. 2007 . A comparative study of 4D-VAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96. Tellus 59A , 96 - 100 .  

  5. Gérard , É. and Saunders , R. 1999 . Four-dimensional variational assimi-lation of special sensor microwave/imager total column water vapour in the ECMWF model . Q. J. R. Meteorol. Soc . 125 , 3077 – 3101 .  

  6. Horel , J. and Colman , B. 2005 . Real-time and retrospective mesoscale objective analyses. Bull. Am. Meteorol. Soc . 86 , 1477 - 1480 .  

  7. Janiskova , M. , Thepaut , J.-N. and Geleyn , J.-F. 1999 . Simplified and regular physical parametrizations for incremental four-dimensional variational assimilation . Mon. Wea. Rev . 127 , 26 – 45 .  

  8. Kalnay , E. 2003 . Atmospheric Modeling, Data Assimilation and Pre-dictability . Cambridge University Press , New York .  

  9. Le Dimet , F.-X. and Talagrand , J. 1986 . Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A , 97 - 110 .  

  10. Lorene , A. C. 1986 . Analysis methods for numerical weather prediction . Q. J. R. Meteorol. Soc . 112 , 1177 – 1194 .  

  11. Lorene , A. C. 2003 . The potential of the ensemble Kalman filter for NWP-a comparison with 4D-VAR . Q. J. R. Meteorol. Soc . 129 , 3183 – 3203 .  

  12. Lorenz , E. N. 1963 . Deterministic nonperiodic flow . J. Atmos. Sci . 20 , 130 – 141 .  

  13. Lorenz , E. N. 1996 . Predictability-a problem partly solved. In: Proceed-ings of ECMWF on Predictability , ECMWF, 4-8 September 1995 .  

  14. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model . J. Atmos. Sci . 55 , 399 – 414 .  

  15. Miller , R. N. , Ghil , M. and Gauthiez F. 1994 . Advanced data assimilation in strongly nonlinear dynamical systems . J. Atmos. Sci . 51 , 1037 – 1056 .  

  16. Pires , C. , Vautard , R. and Talagrand , J. 1996 . On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus 48A , 96 - 121 .  

  17. Press , W. H. , Flannery , B. P. , Teukolsky , S. A. and Vetterling W. V. 1992 . Numerical Recipes in Fortran . Cambridge University Press , New York .  

  18. Rabier , F. and Courtier , P. 1992 . Four-dimensional assimilation in the presence of baroclinic instability . Q. J. R. Meteorol. Soc . 118 , 649 – 672 .  

  19. Rabier , E , Thepaut , J.-N. and Courtier , P. 1998 . Extended assimilation and forecast experiments with a four-dimensional variational assimi-lation system . Q. J. R. Meteorol. Soc . 124 , 1861– 1887 .  

  20. Ruggiero , F. H. , Michalakes , J. , Nehrkorn , T. , Modica , G. D. and Zou , X . 2006 . Development and tests of a new distributed-memory MM5 adjoint. J. Atmos. Ocean Sci . 23 , 424 - 436 .  

  21. Sun , J. 2005 . Initialization and numerical forecast of a supercell storm observed during STEPS . Mon. Wea. Rev . 133 , 793 – 813 .  

  22. Swanson , K. L. , Vautard , R. and Pires , C. 1998 . Four-dimensional vari-ational assimilation and predictability in a quasi-geostrophic model. Tellus 50A , 369 - 390 .  

  23. Zhu , J. and Kamachi , M. 2000 . The role of time step size in numerical stability of tangent linear models . Mon. Wea. Rev . 128 , 1562 – 1572 .  

comments powered by Disqus