Start Submission Become a Reviewer

Reading: Fine structure of a Greenland reverse tip jet: a numerical simulation

Download

A- A+
Alt. Display

Original Research Papers

Fine structure of a Greenland reverse tip jet: a numerical simulation

Authors:

Tadayasu Ohigashi ,

Department of Physics, University of Toronto, Toronto, ON, CA
X close

G. W. Kent Moore

Department of Physics, University of Toronto, Toronto, ON, CA
X close

Abstract

Reverse tip jets are strong low-level winds with easterly component that form near the southern tip of Greenland. In the present study, a reverse tip jet case which occurred from 21 to 22 December 2000 was examined to clarify its fine structure using a numerical model with a horizontal resolution of 3 km. The reverse tip jet, showing the supergeostrophic wind speed with a maximum wind speed in excess of 45 m s-1, extended from the east coast of Greenland to the west of Cape Farewell with anticyclonic curvature. A cloud free region coincided with the jet indicated that there was a mesoscale downdraft. Along the eastern edge of the jet, a banded cloud formed between the upstream easterly wind and the colder northerly wind that is a part of the jet and is located along the east coast. This cloud was associated with large gradients in surface wind speed, temperature, moisture, and heat flux. A maximum surface total heat flux of 300Wm-2 coincided with the location of the jet. It is suggested that the orographic deflection byGreenland’s large-scale topography as well as small-scale downslope winds behind mountains with fiords causes the reverse tip jet.

How to Cite: Ohigashi, T. and Moore, G.W.K., 2009. Fine structure of a Greenland reverse tip jet: a numerical simulation. Tellus A: Dynamic Meteorology and Oceanography, 61(4), pp.512–526. DOI: http://doi.org/10.1111/j.1600-0870.2009.00399.x
  Published on 01 Jan 2009
 Accepted on 2 Mar 2009            Submitted on 17 Dec 2007

References

  1. Asselin , R. 1972 . Frequency filter for time integrations . Mon. Wea. Rev . 100 , 487 – 490 .  

  2. Baines , P. G. 1987 . Upstream blocking and airflow over mountains . Ann. Rev. Fluid Mech . 19 , 75 – 97 .  

  3. Barstad , I. and Gronhs , S. 2005 . Southwesterly flows over southern Norway—Mososcale sensitivity to large-scale direction and speed . Tel-lus 57A , 136 – 152 .  

  4. Barstad , I. and Gronas , S. 2006 . Dynamical structures for southwesterly airflow over southern Norway: the role of dissipation . Tellus 58A , 2 – 18 .  

  5. van den Broeke , M. R. and Gallee , H. 1990 . Observation and simulation of barrier winds at the western margin of the Greenland ice sheet . Quart. J. Roy. Meteor. Soc . 122 , 1365 – 1383 .  

  6. Chen , W.-D. and Smith , R. B. 1987 . Blocking and deflection of airflow by the Alps . Mon. Wea. Rev . 115 , 2578 – 2597 .  

  7. Cotton , W. R. and Anthes , R. A. 1989 . Storm and Cloud Dynamics . Academic Press , San Diego , CA , 883 pp .  

  8. Doyle , J. D. and Shapiro , M. A. 1999 . Flow response to large-scale topography: The Greenland tip jet . Tellus 51A , 728 – 748 .  

  9. Endo , S. , Shinoda , T. , Tanaka , H. , Hiyama , T. , Tsubolci , K. , and co-authors . 2008. Characteristics of vertical circulation in the convective boundary layer over the Huaihe River Basin in China in the early summer of 2004. J. AppL Meteor Climatol . 47 , 2911 - 2928 .  

  10. Flamant , C. , Drobinski , P. , Nance , L. , Banta , R. , Darby , L. and co-authors . 2002. Gap flow in an Alpine valley during a shallow south f6hn event: observations, numerical simulations and hydraulic ana-logue. Quart. J. Roy. Meteor Soc . 128 , 1173 - 1210 .  

  11. Gabergek , S. and Durran , D. R. 2004 . Gap flows through idealized topography. Part I: forcing by large-scale winds in the nonrotating limit . J. Atmos. Sci . 61 , 2846 – 2862 .  

  12. Gabergek , S. and Durran , D. R. 2006 . Gap flows through idealized topography. Part H: effects of rotation and surface friction . J. Atmos. Sci . 63 , 2720 – 2739 .  

  13. Gill , A. E. 1982 . Atmosphere-Ocean Dynamics . Academic Press , San Diego , CA , 662 pp .  

  14. Godske , C. L. , Bergeron , T. , Bjerknes , J. and Bundgaard , R. C. 1957 . Dynamic Meteorology and Weather Forecasting . American Meteorological Society , Boston, MA and Carnegie Institution of Washington , Washington, DC ., 800 pp .  

  15. Grell , G. A. , Dudhia , J. and Stauffer , D. R. 1995 . NCAR Technical Note “A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5)”. NCAR , Boulder , CO , 122 pp .  

  16. Jackson , P. L. and Steyn , D. G. 1994a . Gap winds in a fjord. Part I: Observations and numerical simulation . Mon. Wea. Rev . 122 , 2645 - 2665 .  

  17. Jackson , P. L. and Steyn , D. G. 1994b . Gap winds in a fjord. Part 11: hydraulic analog . Mon. Wea. Rev . 122 , 2666 - 2676 .  

  18. Klemp , J. B. and Wilhelmson , R. B. 1978 . The simulation of three-dimensional convective storm dynamics . J. Atmos. Sci . 35 , 1070 – 1096 .  

  19. Lavender , K. L. , Davis , R. E. and Owens , W. B. 2002 . Observations of open-ocean deep convection in the Labrador Sea from subsurface floats . J. Phys. Oceanogr 32 , 511 – 526 .  

  20. Lilly , D. K. 1978 . A severe downslope windstorm and aircraft turbulence event induced by a mountain wave . J. Atmos. Sci . 35 , 59 – 77 .  

  21. Liu , A. Q. , Moore , G. W. K. , Tsuboki , K. and Renfrew , I. A. 2004 . A high-resolution simulation of convective roll clouds during a cold-air out-break . Geophys. Res. Lett . 31 , L03101 , https://doi.org/10.1029/2003GL018530 .  

  22. Liu , A. Q. , Moore , G. W. K. , Tsuboki , K. and Renfrew , I. A. 2006 . The effect of the sea-ice zone on the development of boundary-layer roll clouds during cold air outbreaks. Bound.-Layer Meteor 118 , 557 - 581 .  

  23. Maesalca , T. , Moore , G. W. K. , Liu , Q. and Tsuboki , K. 2006 . A sim-ulation of a lake effect snowstorm with a cloud resolving numerical model . Geophys. Res. Lett . 33 , L20813 , https://doi.org/10.1029/2006GL026638 .  

  24. Martin , R. and Moore , G. W. K. 2007 . Air-sea interaction associated with a Greenland reverse tip jet . Geophys. Res. Lett . 34 , L24802 , https://doi.org/10.1029/2007GL031093 .  

  25. Moore , G. W. K. 2003 . Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland . Geophys. Res. Lett . 30 , 1894 , https://doi.org/10.1029/2003GL018012 .  

  26. Moore , G. W. K. and Renfrew , I. A. 2005 . Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J. Climate 18 , 3713 – 3725 ( corrigendum is provided at 4919 ).  

  27. Moore , G. W. K. , Pickart , R. S. and Renfrew , I. A. 2008 . Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland . Geophys. Res. Lett . 35 , L18802 , https://doi.org/10.1029/2008GL034845 .  

  28. O’Connor , W. P. , Bromwich , D. H. and Carrasco , J. E 1994 . Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island . Mon. Wea. Rev . 122 , 137 - 150 .  

  29. Ohigashi , T. and Tsuboki , K. 2007 . Shift and intensification processes of the Japan-Sea Polar-Airmass Convergence Zone associated with the passage of a mid-tropospheric cold core . J. Meteor Soc. Japan 85 , 633 – 662 .  

  30. Pan , E and Smith , R. B. 1999 . Gap winds and wakes: SAR observations and numerical simulations . J. Atmos. Sci . 56 , 905 – 923 .  

  31. Parish , T. R. 1982 . Barrier winds along the Sierra Nevada Mountains . J. AppL Meteor 21 , 925 – 930 .  

  32. Picicart , R. S. , Spall , M. A. , Ribergaard , M. H. , Moore , G. W. K. and Milliff , R. F. 2003 . Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424 , 152 - 156 .  

  33. Renfrew , I. A. , Moore , G. W. K. , Kristjánsson , J. E. , Olafsson , H. , Gray , S. L. and co-authors . 2008. The Greenland Flow Distortion experiment. Bull. Amer Meteor Soc . 89 , 1307 - 1324 .  

  34. Saito , K. 1993 . A numerical study of the local downslope wind “Yamaji-lcaze” in Japan. Part 2: non-linear aspect of the 3-D flow over a mountain range with a col . J. Meteor Soc. Japan 71 , 247 – 271 .  

  35. Saito , K. and Ikawa , M. 1991 . A numerical study of the local downslope wind “Yamaji-kaze” in Japan . J. Meteor Soc. Japan 69 , 31 – 56 .  

  36. Serreze , M. C. , Carse , E , Barry , R. G. and Rogers , J. C. 1997 . Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the northern hemisphere circulation . J. Climate 10 , 453 – 464 .  

  37. Sharp , J. and Mass , C. 2002 . Columbia Gorge gap flow . Bull. Amer Meteor Soc . 83 , 1757 – 1762 .  

  38. Skeie , P. and Gronhs , S. 2000 . Strongly stratified easterly flows across Spitsbergen . Tellus 52A , 473 – 486 .  

  39. Smith , R. B. 1982 . Synoptic observations and theory of orographically wind and pressure . J. Atmos. Sci . 39 , 60 – 70 .  

  40. Steenburgh , W. J. , Schultz , D. M. and Colle , B. A. 1998 . The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev . 126 , 2673 - 2691 .  

  41. Tsuboki , K. and Salcakibara , A. 2002 . Large-scale parallel computing of cloud resolving storm simulator . High Performance Computing (eds. H. Zima et al). Springer-Verlag , Berlin-Heidelberg , 243 – 259 .  

  42. Tsuboki , K. and Salcalcibara , A. 2007 . Numerical Prediction of High- Impact Weather Systems —The Textbook for Seventeenth IHP Train-ing Course in 2007—. Hydrospheric Atmospheric Research Center , Nagoya , Japan , 281 pp .  

  43. Wang , C.-C. , Chen , G. T.-J. , Chen , T.-C. and Tsuboki , K. 2005 . A numerical study on the effects of Taiwan topography on a convective line during the mei-yu season . Mon. Wea. Rev . 133 , 3217 – 3242 .  

  44. Yamada , H. 2008 . Numerical simulations of the role of land surface con-ditions in the evolution and structure of summertime thunderstorms over a flat highland . Mon. Wea. Rev . 136 , 173 – 188 .  

  45. Yamada , H. , Geng , B. , Uyeda , H. and Tsuboki , K. 2007a . Role of the heated landmass on the evolution and duration of a heavy rain episode over a Meiyu-Baiu frontal zone . J. Meteor. Soc. Japan 85 , 687 - 709 .  

  46. Yamada , H. , Geng , B. , Uyeda , H. and Tsuboki , K. 2007b . Thermody-namic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu-Baiu front . J. Meteor Soc. Japan 85 , 663 - 685 .  

  47. Zhang , C.-Z. , Uyeda , H. , Yamada , H. and Geng , B . 2006 . Characteris-tics of convections of medium depth to south of the meiyu front ana-lyzed by using numerical simulation. Sci. Online Lett. Atmos . 2 , 160 - 163 .  

comments powered by Disqus