Start Submission Become a Reviewer

Reading: The Iceland–Lofotes pressure difference: different states of the North Atlantic low-pressure...

Download

A- A+
Alt. Display

Original Research Papers

The Iceland–Lofotes pressure difference: different states of the North Atlantic low-pressure zone

Authors:

Annika Jahnke-Bornemann ,

Meteorological Institute, University of Hamburg, D-20146 Hamburg, DE
X close

Burghard Brümmer

Meteorological Institute, University of Hamburg, D-20146 Hamburg, DE
X close

Abstract

The extended North Atlantic low-pressure zone exhibits two pressure minima in the long-term winter mean: the primary one west of Iceland and the secondary one near Norwegian Lofotes Islands. Based on the ERA-40 data set and on wintertime monthly sea level pressure (SLP) anomalies at both places, the states of co-and antivariability are investigated. The covariability represents states of a strongly or weakly developed North Atlantic low-pressure zone The difference between these two states represents the NAO pattern. The antivariability is defined by an Iceland—Lofotes difference (ILD) index, which is positive (negative) when the anomaly in the Lofotes area is higher (lower) than that in the Iceland area. An ILD pattern is calculated as difference between SLP composites for high and low ILD indices. The ILD pattern extends horizontally beyond the two centers and affects other prominent Northern Hemisphere pressure centres: Aleutian low; Siberian high and Azores high. The pattern extends into the stratosphere and shows significant impacts on surface air temperature, Arctic sea ice concentration and sea ice motion.

How to Cite: Jahnke-Bornemann, A. and Brümmer, B., 2009. The Iceland–Lofotes pressure difference: different states of the North Atlantic low-pressure zone. Tellus A: Dynamic Meteorology and Oceanography, 61(4), pp.466–475. DOI: http://doi.org/10.1111/j.1600-0870.2009.00401.x
2
Views
1
Downloads
  Published on 01 Jan 2009
 Accepted on 16 Mar 2009            Submitted on 28 Apr 2008

References

  1. Affeld , B. 2003 . Zyklonen in der Arktis und ihre Bedeutung fi, ir den Eiseacport durch die Framstrafie. PhD Thesis. Univ. Fachbereich Geowissenschaften, 124 pp, available at: http://www.sub.uni-hamburg.de/opus/volltexte/2003/1009.  

  2. Ambaum , M. and Hoskins , B. 2002 . The NAO troposphere-stratosphere connection . J. Clim . 15 , 1969 – 1978 .  

  3. Ambaum , M. , Hoskins , B. and Stephenson , D. 2001 . Arctic oscillation or North Atlantic oscillation? J. Clim . 14 , 3495 – 3507 .  

  4. Baldwin , M. and Dunkerton , T. 1999 . Propagation of the Arctic oscilla-tion from the stratosphere to the troposphere. J. Geophys. Res . 104 , 30937 - 30946 .  

  5. Cavalieri , D. and S. Häkkinen . 2001 . Arctic climate and atmospheric planetary waves . Geophys. Res. Lett . 28 , 791 – 794 .  

  6. Cohen , J. , Saito , K. and Entelchabi , D. 2001 . The role of the Siberian high in northern hemisphere climate variability . Geophys. Res. Lett ., 28 , 299 – 302 .  

  7. Fowler , C. 2003 , updated 2007. Polar Pathfinder Daily 25 km EASE-grid Sea Ice Motion Vectors. National Sea Ice Data Center (NSIDC), Boulder, CO. Available at: http://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html .  

  8. Hilmer , M. and Jung , T. 2000 . Evidence for a recent change in the link between the North Atlantic oscillation and Arctic Sea ice export . Geophys. Res. Lett . 27 , 989 – 992 .  

  9. Hilmer , M. , Harder , M. and Lemke , P. 1998 . Sea ice transport: a highly variable link between Arctic and North Atlantic . Geophys. Res. Lett . 25 , 3359 – 3362 .  

  10. Hurrell , J. W. 1995 . Decadal trends in the North Atlantic oscilla-tion: regional temperatures and precipitation . Science 269 , 676 – 679 .  

  11. Hurrell , J. W. , Kushnir , Y. , Ottersen , G. and Visbeck , M. (eds.) 2003 . An overview of the North Atlantic oscillation . In: The North Atlantic Oscillation , Geophysical Monograph Volume 134. AGU , 1 – 34 .  

  12. Jones , P. D. , Jonsson , T. and Wheeler , D. 1997 . Extension of the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and Southwest Iceland . Int. J. Climatol . 17 , 1433 – 1450 .  

  13. Kwok , R. and Rothrock , D. A. 1999 . Variability of Fram Strait ice flux and North Atlantic oscillation . J. Geophys. Res ., 104 , 5177 – 5189 .  

  14. Lu , J. and Greatbatch , R. J. 2002 . The changing relationship between the NAO and northern hemisphere climate variability . Geophys. Res. Lett . 29 , 1148 , https://doi.org/10.1029/2001GL014052 .  

  15. Luo , D. and Gong , T. 2006 . A possible mechanism for the eastward shift of interannual NAO action centers in last three decades . Geophys. Res. Lett . 33 , L24815 , https://doi.org/10.1029/2006GL027860 .  

  16. Mächel , H. , Kapala , A. and Flohn , H. 1998 . Behaviour of the centers of action above the atlantic since 1881. Part I: characteristics of seasonal and interannual variability . Int. J. Climatol . 18 , 1 – 22 .  

  17. NCAR (National Center for Atmospheric Research) . 2007 . NAO index data provided by the Climate Analysis Section, NCAR, Boulder, USA (Hurrell 1995) . Available at: http : //www.cgd.ucar. edu/cas/jhurrell/indices.html .  

  18. Peterson , K. A. , Lu , J. and Greatbatch , R. J. 2003 . Evidence of nonlinear dynamics in the eastward shift of the NAO . Geophys. Res. Lett . 30 , 1030 , https://doi.org/10.1029/2002GL015585 .  

  19. Rogers , J. C. 1997 . North Atlantic storm track variability and its as-sociation to the North Atlantic oscillation and climate variability of Northern Europe . J. Clim . 10 , 1635 – 1647 .  

  20. Rogers , J. C. and Mosley-Thompson , E. 1995 . Atlantic Arctic cyclones and the mild Siberian winters of the 1980s . Geophys. Res. Lett . 22 , 799 – 802 .  

  21. Serreze , M. C. , Carse , F. , Barry , R. and Rogers , J. 1997 . Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation . J. Clim . 10 , 453 – 464 .  

  22. Skeie , P. 2000 . Meridional flow variability over the Nordic Seas in the Arctic oscillation framework . Geophys. Res. Lett . 27 , 2569 – 2572 .  

  23. Ulbrich , U. and Christoph , M. 1999 . A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing . Clim. Dyn . 15 , 551 – 559 .  

  24. Uppala , S. M. , Kallberg , P. W. , Simmons , A. J. , Andrae , U., da Costa Bechtold , V. and co-authors. 2005. The ERA-40 re-analysis. Q. J. R. MeteoroL Soc . 131 , 2961 - 3012 .  

  25. Vinje , T. 2001 . Fram Strait ice fluxes and atmospheric circulation: 1950-2000 . J. Clim . 14 ( 16 ), 3508 – 3517 .  

  26. Wallace , J. M. 2000 . North Atlantic oscillation/annular mode: two paradigms—one phenomenon . Q. J. R. MeteoroL Soc . 126 , 791 – 805 .  

  27. Wernli , H. and Schwierz , C. 2006 . Surface cyclones in the ERA-40 dataset (1958-2001). Part I: novel identification method and global climatology . J. Atmos. Sci . 63 , 2486 – 2507 .  

  28. Wu , B. , Wang , J. and Walsh , J. 2004 . Possible feedback of winter sea ice in the Greenland and Barents Sea on the local atmosphere . Mon. Wea. Rev . 132 , 1868– 1876 .  

  29. Wu , B. , Wang , J. and Walsh , J. 2006 . Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Clim . 19 , 210 - 225 .  

comments powered by Disqus