Start Submission Become a Reviewer

Reading: Impact of swell on simulations using a regional atmospheric climate model

Download

A- A+
Alt. Display

Original Research Papers

Impact of swell on simulations using a regional atmospheric climate model

Authors:

Björn Carlsson ,

Department of Earth Sciences, Meteorology, Uppsala University, Villavägen 16, SE-752 36 Uppsala, SE
X close

Anna Rutgersson,

Department of Earth Sciences, Meteorology, Uppsala University, Villavägen 16, SE-752 36 Uppsala, SE
X close

Ann-Sofi Smedman

Department of Earth Sciences, Meteorology, Uppsala University, Villavägen 16, SE-752 36 Uppsala, SE
X close

Abstract

When long, fast swell waves travel in approximately the same direction as the wind, the surface stress is reduced compared with under wind-sea conditions. Using measurements from the OØstergarnsholm site in the Baltic Sea, new expressions of the roughness length were developed for wind sea and swell. These new expressions were implemented in the RCA3 regional climate model covering Europe. A 3-year simulation and two case studies using the wavefield from the ECMWF reanalysis (ERA-40) were analysed using the improved formulations. Wind-following swell led to a significant reduction of mean wind stress and heat fluxes. The mean surface layer wind speed was redistributed horizontally and the marine boundary layer cooled and dried slightly. This cooling was most pronounced over North Sea and the Norwegian Sea (almost 0.2°C annually on average) whereas the drying was most pronounced over the Mediterranean Sea (almost 0.4 g kg-1). Somewhat less convective precipitation and low-level cloudiness over the sea areas were also indicated, in particular over the Mediterranean Sea. The impact on the atmosphere, however, is significantly locally greater in time and space.

How to Cite: Carlsson, B., Rutgersson, A. and Smedman, A.-S., 2009. Impact of swell on simulations using a regional atmospheric climate model. Tellus A: Dynamic Meteorology and Oceanography, 61(4), pp.527–538. DOI: http://doi.org/10.1111/j.1600-0870.2009.00403.x
  Published on 01 Jan 2009
 Accepted on 16 Mar 2009            Submitted on 16 Oct 2008

References

  1. Businger , J. A. , Wyngaard , J. C. , Izumi , Y. and Bradley , E. F. 1971 . Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sc i . 28 , 181 – 189 .  

  2. Carlsson , B. , Rutgersson , A. and Smedman , A.-S. 2009 . Investigating the effect of a wave-dependent momentum flux in a process oriented ocean model . Boreal Environ. Res . 14 , 3 – 17 .  

  3. Charnock , H. 1955 . Wind stress on a water surface . Q. J. R. MeteoroL Soc . 81 , 639 – 640 .  

  4. Donelan , M. A. 1990 . Air-sea interaction . In: The Sea: Ocean Engineering Science Volume 9 (eds. B. LeMehaute and D. Hanes ). John Wiley , New York , 239 – 292 .  

  5. Donelan , M. A. , Hamilton , J. and Hui , W. H. 1985 . Directional spectra of wind-generated waves . Phil. Trans. R. Soc. Lond. A 315 , 509 – 562 .  

  6. Doyle , J. D. 1995 . Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis . Tellus 47A , 766 – 778 .  

  7. Doyle , J. D. 2002 . Coupled atmosphere-ocean wave simulations under high wind conditions. Mon. Wea. Re v . 130 , 3087 – 3099 .  

  8. Drennan , W. M. , Graber , H. C. and Donelan , M. A. 1999 . Evidence for the effects of swell and unsteady winds on marine wind stress . J. Phys. Oceanogr 29 , 1853 – 1864 .  

  9. Drennan , W. M. , Graber , H. C. , Hauser , D. and Quentin , C. 2003 . On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res . 108 , FET10.1-FET10.13, https://doi.org/10.1029/2000JC000715 .  

  10. Edson , J. B. and Fairall , C. W. 1998 . Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets . J Atmos. Sc i . 55 , 2311 – 2328 .  

  11. Fairall , C. W. , Bradley , E. E , Hare , J. E. , Grachev , A. A. and Edson , J. B. 2003 . Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm . J. Clim . 16 , 571 – 591 .  

  12. Grachev , A. A. and Fairall , C. W. 2001 . Upward momentum trans-fer in the marine boundary layer . J. Phys. Oceanogr 31 , 1698 – 1711 .  

  13. Guo Larsén , X. 2003 . Climatological characteristics at a marine site in the Baltic Sea Proper. In: Air-Sea Exchange of Momentum and Sensi-ble Heat over the Baltic Sea, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology Volume 820. Acta Universitatis Upsaliensis, Uppsala, Sweden, 1 - 23 .  

  14. Guo Larsén , X. , Makin , V. K. and Smedman , A.-S. 2003 . Impact of waves on the sea drag: measurements in the Baltic Sea and a model interpretation . Glob. Atmos. Ocean Syst . 9 , 97 – 120 .  

  15. Guo Larsén , X. , Smedman , A.-S. and Högström , U. 2004 . Air-sea ex-change of sensible heat over the Baltic Sea . Q. J. R. MeteoroL Soc . 130 , 519 – 539 .  

  16. Haugen , D. A. , Kaimal , J. C. and Bradley , E. E 1971 . An experimental study of Reynolds stress and heat flux in the atmospheric surface layer . Q. J. R. Meteorol. Soc . 97 , 168 – 180 .  

  17. Holland , J. Z. , Chen , W. , Almazon , J. A. and Elder , F. C. 1981 . Atmo-spheric boundary layer. In: IFYGL: The International Field Year for the Great Lakes (eds. E. J. Aubert and T. L. Richards ). NOAA, Ann Arbor, MI , 109 - 167 .  

  18. Högström , U. 1990 . Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atm. Sc i . 47 , 1949 – 1972 .  

  19. Högström , U. 1996 . Review of some basic characteristics of the atmo-spheric surface layer . Bound.-Lay. MeteoroL 78 , 215 – 246 .  

  20. Högstrom , U. , Sahlee , E. , Drennan , W. M. , Kahma , K. K. , Smedman , A.-S. and co-authors. 2008. Momentum fluxes and wind gradients in the marine boundary layer - a multi-platform study . Boreal Environ. Res . 13 , 475 - 502 .  

  21. Hwang , P. A. 2005 . Temporal and spatial variation of the drag coefficient of a developing sea under steady wind-forcing. J. Geophys. Res . 110 , C07024.1-007024.6, https://doi.org/10.1029/2005JC002912 .  

  22. Janssen , P. A. E. M. and Viterbo , P. 1996 . Ocean waves and the atmo-spheric climate . J. Clim . 9 , 1269 – 1287 .  

  23. Janssen , P. A. E. M. , Doyle , J. D. , Bidlot , J. , Hansen , B. , Isaksen , L. and co-authors. 2001. Impact and feedback of ocean waves on the atmosphere. ECMWF Technical Memorandum, no. 341, ECMWF, Reading, England , 32 pp .  

  24. Johansson , C. , Smedman , A.-S. , Bergstrom , H. , Gryning , S.-E. 2003 . Influence of boundary layer height on turbulence structure in the marine atmospheric surface layer over the Baltic Sea. In: Influence of External factors on the Turbulence Structure in the Boundary Layer, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology Volume 792. Acta Universitatis Upsaliensis, Uppsala, Sweden, 1 - 29 .  

  25. Jones , C. G. , Willen , U. , Ullerstig , A. and Hansson , U. 2004 . The Rossby Centre regional atmospheric climate model Part I: model climatology and performance for the present climate over Europe . Ambio 33 , 199 – 210 .  

  26. Large , W. G. and Pond , S. 1981 . Open ocean momentum flux measure-ments in moderate to strong winds. J. Phys. Oceanogr 11 , 324 - 336.  

  27. Lionello , R , Malguzzi , P. and Buzzi , A. 1998 . Coupling between the atmospheric circulation and the ocean wave field: an idealized case . J. Phys. Oceanogr 28 , 161 – 177 .  

  28. Ohlson , A. 2006 . The accuracy of the wind stress over ocean of the Rossby Centre Atmospheric model (RCA) . Master Thesis. Department of Geosciences , Uppsala University , Sweden , 29 pp .  

  29. Pan , J. , Wang , D. W. and Hwang , P. A. 2005 . A study of wave effects on wind stress over the ocean in a fetch-limited case. J. Geophys. Res . 110 , CO2020.1—0O2020.15, https://doi.org/10.1029/2003JC002258 .  

  30. Paulson , C. A. 1970 . The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer . J. Appl. Meteorol . 9 , 857 – 861 .  

  31. Pierson , W. J. 1964 . The interpretation of wave spectrums in terms of the wind profile instead of the wind measured at a constant height . J. Geophys. Res . 69 , 5191 – 5203 .  

  32. Pierson , W. J. and Moskowitz , L. 1964 . A proposed spectral form for fully developed seas based on the similarity theory of S. A. Kitaig-orodslcii . J. Geophys. Res . 69 , 5181 – 5190 .  

  33. Rutgersson , A. and Sullivan , P. P. 2005 . The effect of idealized water waves on the turbulent structure and kinetic energy budgets in the overlying airflow. Dyn. Atmos. Oceans 38 , 147 - 171 .  

  34. Rutgersson , A. , Smedman , A.-S. and Högstriim , U. 2001 . Use of con-ventional stability parameters during swell. J. Geophys. Res . 106 , 27117 - 27134 .  

  35. Rutgersson , A. , Carlsson , B. and Smedman , A.-S. 2007 . Modelling sen-sible and latent heat fluxes over sea during unstable, very close to neutral conditions . Bound-Lay. Meteorol . 123 , 395 – 415 .  

  36. Smedman , A.-S. , Tjernstriim , M. and Högstriim , U. 1994 . The near-neutral marine atmospheric boundary layer with no surface shearing stress: a case study . J. Atm. Sci . 51 , 3399 – 3411 .  

  37. Smedman , A.-S. , Högström , U. , Bergstrom , H. , Rutgersson , A. , Kahma , K. K. and co-authors . 1999 . A case study of air—sea interaction during swell conditions. J. Geophys. Res . 104 , 25833 - 25851 .  

  38. Smedman , A.-S. , Guo Larsen , X. , Högstriim , U. , Kahma , K. K. and Pettersson , H. 2003 . Effect of sea state on the momentum exchange over the sea during neutral conditions . J. Geophys. Res . 108 , 3367 , https://doi.org/10.1029/2002JC001526 .  

  39. Smedman , A-.S. , Högström , U. , Sahlee , E. and Johansson , C. 2007 . Crit-ical re-evaluation of the bulk transfer coefficient for sensible heat over the ocean during unstable and neutral conditions . Q. J. R. Meteorol. Soc . 133 , 227 – 250 .  

  40. Stewart , R. W. 1974 . The air—sea momentum exchange . Bound.-Lay. Meteorol . 6 , 151 – 167 .  

  41. Sullivan , P. P. , McWilliams , J. C. and Moeng , C.-H. 2000 . Simulation of turbulent flow over idealized water waves . J. Fluid Mech . 404 , 47 - 85 .  

  42. Sullivan , P. P. , Edson , J. B. , Hristov , T. and McWilliams , J. C. 2008 . Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atm. Sci . 65 , 1225 - 1245 .  

  43. WAMDI Group ( Hasselmann , S. , Hasselmann , K. , Bauer , E. , Janssen , P. A. E. M. , Komen , G. and co-authors) . 1988 . The WAM model — a third generation ocean wave prediction model . J. Phys. Oceanogr 18 , 1775– 1810 .  

  44. Woetmann-Nielsen , N. 1998 . Inclusion of free convection and a smooth sea surface in the parameterisation of surface fluxes over sea. Hirlam Newsletter 32 : 44 – 51 . Available from: SMHI, SE-601 76 Norrkoping, Sweden .  

comments powered by Disqus