Start Submission Become a Reviewer

Reading: An efficient retrospective optimal interpolation algorithm compared with the fixed-lag Kalma...

Download

A- A+
Alt. Display

Original Research Papers

An efficient retrospective optimal interpolation algorithm compared with the fixed-lag Kalman smoother by assuming a perfect model

Authors:

Hyo-Jong Song,

School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, KR
X close

Gyu-Ho Lim

School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, KR
X close

Abstract

We developed an efficient retrospective optimal interpolation (ROI) algorithm by which we can avoid the overlap of model integration periods, which appears in the procedure of evolving a previous analysis error covariance. If the fixed-lag Kalman smoother (FLKS) is used to determine the analysis state at the beginning of the fixed analysis window as is done for ROI, the FLKS can be considered a suboptimal version of the efficient ROI when the involved model is non-linear and has no errors. We confirm that the efficient ROI analyses are more accurate than the FLKS analyses with the increase of the analysis window size. Nevertheless, the computation costs for implementing efficient ROI are almost the same as those for FLKS. Additionally, the reduced-rank version of the efficient ROI is developed based on the accuracy-saturation property.

From the experiments using Lorenz 3-variable model, it is confirmed that the non-linearity of numerical model, which becomes stronger with the increase of the analysis window size, makes the analysis of efficient ROI more accurate than that of FLKS. Our Lorenz 40-variable experiments show that the average analysis error of the efficient ROI is smaller than that of the FLKS for an analysis window size of up to 4 d. However, the efficient ROI and the FLKS requires almost the same costs for computation. From the results of Lorenz 40-variable model experiments, it is suggested that, by using the reduced-rank formulation of the efficient ROI, we can obtain the suboptimal analysis more cost-effectively rather than FLKS.

How to Cite: Song, H.-J. and Lim, G.-H., 2009. An efficient retrospective optimal interpolation algorithm compared with the fixed-lag Kalman smoother by assuming a perfect model. Tellus A: Dynamic Meteorology and Oceanography, 61(5), pp.610–620. DOI: http://doi.org/10.1111/j.1600-0870.2009.00409.x
  Published on 01 Jan 2009
 Accepted on 23 Jul 2008            Submitted on 17 Oct 2007

References

  1. Cohn , S. E. , Sivakumaran , N. S. and Todling , R. 1994 . A fixed-lag Kalman smoother for retrospective data assimilation . Mon. Wea. Rev . 122 , 2838 – 2867 .  

  2. Daley , R. 1991 . Atmospheric Data Analysis . Cambridge University Press , New York .  

  3. Errico , R. M. 2003 . The workshop on applications of adjoint models in dynamic meteorology . Bull. Am. Meteorol. Soc . 84 , 795 – 798 .  

  4. Errico , R. M. and Raeder , K. D. 1999 . An examination of the accuracy of the linearization of a mesoscale model with moist physics . Quart. J. R. Meteorol. Soc . 125 , 169 – 195 .  

  5. Fertig , E. J. , Harlim , J. and Hunt , B. R. 2007 . A comparative study of 4D-VAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96. Tellus 59A , 96 - 100 .  

  6. Hunt , B. R. , Kalnay , E. , Kostelich , E. J. , Ott , E. , Patil , D. J. and co-authors. 2004 . Four-dimensional ensemble Kalman filtering. Tellus 56A , 273 - 277 .  

  7. Kalnay , E. 2003 . Atmospheric Modeling, Data Assimilation and Pre-dictability . Cambridge University Press , New York .  

  8. Le Dimet , F.-X. and Talagrand , J. 1986 . Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A , 97 - 110 .  

  9. Lorenz , E. N. 1963 . Deterministic nonperiodic flow . J. Atmos. Sci . 20 , 130 – 141 .  

  10. Lorenz , E. N. 1996 . Predictability-a problem partly solved. In: Pro-ceedings on Predictability , held at ECMWF on 4-8 September 1995. Reading, UK , 18 pp .  

  11. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model . J. Atmos. Sci . 55 , 399 – 414 .  

  12. Miller , R. N. , Ghil , M. and Gauthiez , F. 1994 . Advanced data assim-ilation in strongly nonlinear dynamical systems . J. Atmos. Sci . 51 , 1037 – 1056 .  

  13. Pires , C. , Vautard , R. and Talagrand , J. 1996 . On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus 48A , 96 - 121 .  

  14. Rabier , F. and Courtier , P. 1992 . Four-dimensional assimilation in the presence of baroclinic instability . Quart. J. R. Meteorol. Soc . 118 , 649 – 672 .  

  15. Rabier , E , Thepaut , J.-N. and Courtier , P. 1998 . Extended assimilation and forecast experiments with a four-dimensional variational assimi-lation system . Quart. J. R. Meteorol. Soc . 124 , 1861– 1887 .  

  16. Ruggiero , F. H. , Michalakes , J. , Nehrkorn , T. , Modica , G. D. and Zou , X. 2006 . Development and tests of a new distributed-memory MM5 adjoint . J. Atmos. Ocean Sci . 23 , 424 – 436 .  

  17. Song , H.-J. , Lim , G.-H. , Lee , D.-I. and Lee , H.-S. 2009 . Comparison of retrospective optimal interpolation with four-dimensional variational assimilation . Tellus 61A , 428 – 437 .  

  18. Todling , R. , Cohn , S. E. and Sivalcumaran , N. S. 1998 . Suboptimal schemes for retrospective data assimilation based on the fixed-lag Kalman smoother. Mon. Wea. Rev . 126 , 247 - 259 .  

  19. Zhang , F. 2005 . Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts . Mon. Wea. Rev . 133 , 2876 – 2893 .  

  20. Zhu , J. and Kamachi , M. 2000 . The role of time step size in numer-ical stability of tangent linear models . Mon. Wea. Rev . 128 , 1562 – 1572 .  

  21. Zhu , Y. , Todling , R. , Guo , J. , Cohn , S. E., Navon , I. M. and co-author . 2003 The GEOS-3 retrospective data assimilation system: the 6-hour lag case . Mon. Wea. Rev . 131 , 2129 - 2150 .  

comments powered by Disqus