Start Submission Become a Reviewer

Reading: Intermediate time error growth and predictability: tropics versus mid-latitudes

Download

A- A+
Alt. Display

Original Research Papers

Intermediate time error growth and predictability: tropics versus mid-latitudes

Authors:

David M. Straus ,

George Mason University MSN 6A2, Fairfax, VA 22030, US
X close

Dan Paolino

Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Rd. Suite 302, Calverton, MD 2075, US
X close

Abstract

The evolution of identical twin errors from an atmospheric general circulation model is studied in the linear range (small errors) through intermediate times and the approach to saturation. Between forecast day 1 and 7, the normalized error variance in the tropics is similar to that at higher latitudes. After that, tropical errors grow more slowly. The predictability time τ taken for tropical errors to reach half their saturation values is larger than that for mid-latitudes, especially for the planetary waves, thus implying greater potential predictability in the tropics.

The discrepancy between mid-latitude and tropical τ is more pronounced at 850 hPa than at 200 hPa, is largest for the planetary waves, and is more pronounced for errors arising from wave phase differences (than from wave amplitude differences).

The spectra of the error in 200 hPa zonal wind show that for forecast times up to about 5 d, the tropical error peaks at much shorter scales than the mid-latitude errors, but that subsequently tropical and mid-latitude error spectra look increasingly similar.

The difference between upper and lower level tropical τ may be due to the greater influence of mid-latitudes at the upper levels.

How to Cite: Straus, D.M. and Paolino, D., 2009. Intermediate time error growth and predictability: tropics versus mid-latitudes. Tellus A: Dynamic Meteorology and Oceanography, 61(5), pp.579–586. DOI: http://doi.org/10.1111/j.1600-0870.2009.00411.x
  Published on 01 Jan 2009
 Accepted on 1 Jun 2009            Submitted on 10 Mar 2009

References

  1. Fu , X. , Yang , B. , Bao , Q. and Wang , B. 2008 . Sea surface temperature feedback extends the predictability of tropical intraseasonal oscilla-tion . Mon. Wea. Rev . 126 , 577 – 597 .  

  2. Hendon , H. H. and Wheeler , M. C. 2008 . Space-time spectral analysis of tropical convection and planetary-scale waves . J. Atmos. Sci . 65 , 2936 – 2948 .  

  3. Hoskins , B. J. and Yang , G.-Y. 2000. The equatorial response to higher latitude forcing. J. Atmos. Sci . 57 , 1197 - 1213 .  

  4. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. and co-authors. 1996 . The NCEP/NCAR 40-year reanalysis project. Bull. Amer Meteor. Soc . 77 , 437 - 471 .  

  5. Leith , C. E. and Kraichnan , R. H. 1972 . Predictability of turbulent flows . J. Atmos. Sci . 29 , 1041 – 1058 .  

  6. Lin , H. , Brunet , G. and Derome , J. 2007 . Intraseasonal variability in a dry atmosphere. J. Atmos. Sci . 64 , 2422 - 2441 .  

  7. Lin , J. W.-B. , Neelin , J. D. and Zeng , N. 2007 . Maintenance of tropical intraseasonal variability: impact of evaporation wind feedback and mid-latitude storms . J. Atmos. Sci . 57 , 1767– 1796 .  

  8. Lorenz , E. N., 1969 . The predictability of a flow which contains many scales of motion . Tellus 21 , 289 – 307 .  

  9. Majda , A. J. and Biello , J. A. 2003 . The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves . J. Atmos. Sci . 60 , 1809– 1821 .  

  10. Mapes , B. , Tulich , S. , Nasuno , S. and Satoh , M. 2008 . Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteor Soc. Jpn . 68 , 175 - 185 .  

  11. Moorthi , S. and Suarez , M. J. 1992 . Relaxed Aralcawa-Schubert: a pa-rameterization of moist convection for general circulation models. Mon. Wea. Rev . 210 , 978 - 1002 .  

  12. Pegion , K. and Kirtman , B. P. 2008 . The impact of air-sea interactions on the predictability of the tropical intraseasonal oscillation . J. Climate 21 , 1228 – 1268 .  

  13. Rayner , N. A. , Parker , D. E. , Horton , E. B. , Folland , C. K. , Alexander , L. V. and co-authors . 2003. Global analyses of sea surface temperature, sea ice, and night marine temperature since the late nineteenth century. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JD002670 .  

  14. Reichler , T. and Roads , J. 0. 2005a . Long-range predictability in the tropics. Part I: monthly averages . J. Climate 18 , 619 – 633 .  

  15. Reichler , T. and Roads , J. 0. 2005b . Long-range predictability in the tropics. Part II: 30-60 day variability . J. Climate 18 , 634 – 650 .  

  16. Reynolds , R. W. and Smith , T. M. 1994 . Improved global seas surface temperature analyses using optimal interpolation . J. Climate 7 , 929 – 948 .  

  17. Rotunno , R. and Snyder , C. 2008 . A generalization of Lorenz’s model for the predictability of flows with many scales of motion . J. Atmos. Sci . 65 , 1063 – 1076 .  

  18. Shukla , J. 1984 . Predictability of time averages. Part II: the influence of boundary forcing. In: Problems and Prospects in Long and Medium Range Weather Forecasting (eds. D. M. , Burridge and E. , Kallen ), Springer-Verlag, New York , 155 - 206 .  

  19. Simmons , A. J. and Hoskins , B. J. 1978 . The life cycle of some nonlinear baroclinic waves . J. Atmos. Sci . 35 , 3609 – 3626 .  

  20. Straus , D. M. and Lindzen , R. S. 2000 . Planetary-scale baroclinic insta-bility and the MJO . J. Atmos. Sci . 57 , 3609 – 3626 .  

  21. Straus , D. M. and Molteni , F. 2004 . Circulation regimes and SST forcing: results from large GCM ensembles . J. Climate 17 , 1641 – 1656 .  

  22. Wheeler , M. and Kiladis , G. N. 1999 . Convectively coupled equato-rial waves: analysis of clouds and temperature in the wavenumber-frequency domain . J. Atmos. Sci . 56 , 374 – 399 .  

comments powered by Disqus