Start Submission Become a Reviewer

Reading: Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and si...

Download

A- A+
Alt. Display

Original Research Papers

Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

Authors:

Diego Pazó ,

Instituto de Física de Cantabria (IFCA), CSIC–UC, Avenida de Los Castros, 39005 Santander, ES
X close

Miguel A. Rodríguez,

Instituto de Física de Cantabria (IFCA), CSIC–UC, Avenida de Los Castros, 39005 Santander, ES
X close

Juan M. López

Instituto de Física de Cantabria (IFCA), CSIC–UC, Avenida de Los Castros, 39005 Santander, ES
X close

Abstract

We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

How to Cite: Pazó, D., Rodríguez, M.A. and López, J.M., 2010. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors. Tellus A: Dynamic Meteorology and Oceanography, 62(1), pp.10–23. DOI: http://doi.org/10.1111/j.1600-0870.2009.00419.x
1
Views
1
Downloads
19
Citations
  Published on 01 Jan 2010
 Accepted on 12 Oct 2009            Submitted on 12 Jun 2009

References

  1. Barabási , A.-L. and Stanley , H. E . 1995 . Fractal Concepts in Surface Growth , Cambridge University Press , Cambridge.  

  2. Benettin , G. , Galgani , L. , Giorgilli , A. and Strelcyn , J.-M . 1980 . Lya-punov characteristic exponents for smooth dynamical systems and for Hamiltonian systems . Meccanica 15 , 9 .  

  3. Eckmann , J.-P. and Ruelle , D . 1985 . Ergodic theory of chaos . Rev. Mod. Phys . 57 , 617 – 656 .  

  4. Errico , R. M. and Langland , R . 1999 . Notes on the appropriateness of “bred modes” for generating initial perturbations used in ensemble prediction . Tellus 51A ( 3 ), 431 – 441 . https://doi.org/10.1034/j.1600-0870.1999.t01-3-00007.x .  

  5. Ershov , S. V. and Potapov , A. B . 1998 . On the concept of stationary Lyapunov basis . Physica D 118 ( 3-4 ), 167 – 198 . https://doi.org/10.1016/S0167-2789(98)00013-X .  

  6. Fenández , J. , Primo , C. , Cofifio , A. , Gutierrez , J. M. and Rodriguez , M. A . 2009 . MVL spatiotemporal analysis for model intercomparison in EPS: application to the DEMETER multi-model ensemble . Clim. Dyn . 33 , 233 – 243 . https://doi.org/10.1007/s00382-008-0456-9 .  

  7. Gutiérrez , J. M. , Primo , C. , Rodriguez , M. A. and Fernandez , J . 2008 . Spatiotemporal characterization of ensemble prediction systems: the mean-variance of logarithms (MVL) diagram. Nonlin. Processes Geophys . 15 ( 1 ), 109 – 114 . URL: http://www.nonlin-processes-geophys.net/15/109/2008/  

  8. Kalnay , E . 2002 . Atmospheric Modeling , Data Assimilation and Predictability , E. Cambridge University Press , Cambridge .  

  9. Kardar , M. , Parisi , G. and Zhang , Y.-C . 1986 . Dynamic scaling of growing interfaces . Phys. Rev. Lett . 56 ( 9 ), 889 – 892 . https://doi.org/10.1103/PhysRevLett.56.889 .  

  10. Legras , B. and Vautard , R . 1996 . A guide to Liapunov vectors. In: Proceedings of the Seminar on Predictability Vol. I , (ed. T. Palmer ). ECWF Seminar, ECMWF, Reading, UK, pp. 135 – 146 .  

  11. López , J. M. , Primo , C. , Rodriguez , M. A. and Szendro , I. G . 2004 . Scaling properties of growing noninfinitesimal perturbations in space—time chaos . Phys. Rev. E 70 ( 5 ), 056224 . https://doi.org/10.1103/PhysRevE.70.056224.  

  12. Lorenz , E. N . 1996 . Predictability a problem partly solved. In: Proceedings of the Seminar on Predictability Vol. I , (ed. T. Palmer ), ECWF Seminar, ECMWF, Reading , UK , pp. 1 – 18 .  

  13. Lorenz , E. N. and Emanuel , K. A . 1998 . Optimal sites for supplementary weather observations: simulations with a small model . J. Atmos. Sci . 55 ( 3 ), 399 – 414 . https://doi.org/10.1175/1520-0469(1998)0550399:0sfswo2.0.00;2.  

  14. Molteni , F. , Buizza , R. , Palmer , T. N. and Petroliagis , T . 1996 . The ECMWF ensemble prediction system: Methodology and validation . Quart. J. Roy. Meteor. Soc . 122 , 73 – 119 .  

  15. Pazó , D. , Szendro , I. G. , Lopez , J. M. and Rodríguez , M. A . 2008 . Structure of characteristic Lyapunov vectors in spatiotemporal chaos . Phys. Rev. E 78 ( 1 ), 016209 . https://doi.org/10.1103/PhysRevE.78.016209. http://linlc.aps.org/abstract/PRE/v78/e016209  

  16. Pazó , D. , López , J. M. and Rodriguez , M. A . 2009 . Exponential localization of singular vectors in spatiotemporal chaos . Phys. Rev. E 79 ( 3 ), 036202 . https://doi.org/10.1103/PhysRevE.79.036202. linlc.aps.org/abstract/PRE/v79/e036202  

  17. Pikovsky , A. and Politi , A . 1998 . Dynamic localization of Lya-punov vectors in spacetime chaos . Nonlinearity 11 ( 4 ), 1049 – 1062 . https://doi.org/10.1088/0951-7715/11/4/016 .  

  18. Pikovsky , A. S. and Kurths , J . 1994 . Roughening interfaces in the dynamics of perturbations of spatiotemporal chaos . Phys. Rev. E 49 ( 1 ), 898 – 901 . https://doi.org/10.1103/PhysRevE.49.898 .  

  19. Primo , C. , Rodriguez , M. A. , Lopez , J. M. and Szendro , I . 2005 . Predictability, bred vectors, and generation of ensembles in space-time chaotic systems . Phys. Rev. E 72 ( 1 ), 015201 . https://doi.org/10.1103/PhysRevE.72.015201 .  

  20. Primo , C. , Szendro , I. G. , Rodriguez , M. A. and LOpez , J. M . 2006 . Dynamic scaling of bred vectors in spatially extended chaotic systems . Europhys. Lett . 76 , 767 . https://doi.org/10.1209/epl/i2006-10370-7 .  

  21. Primo , C. , Szendro , I. G. , Rodriguez , M. A. and Gutierrez , J. M . 2007 . Error growth patterns in systems with spatial chaos: from coupled map lattices to global weather models . Phys. Rev. Lett . 98 ( 10 ), 108501 . https://doi.org/10.1103/PhysRevLett.98.108501. URL: http://linlc.aps.org/abstract/PRL/v98/e108501  

  22. Primo , C. , Rodriguez , M. A. and Gutierrez , J. M . 2008 . Logarithmic bred vectors. A new ensemble method with adjustable spread and calibration time . J. Geophys. Res . 113 . D05116 .  

  23. Ruelle , D . 1979 . Ergodic theory of differentiable dynamical systems . Phys. Math. IHES 50 , 27 – 58 .  

  24. Smith , L. A . 2001 . Disentangling uncertainty and error: On the predictability of nonlinear systems . In: Nonlinear Dynamics and Statistics (ed. A. I. Mees ), Birkhäuser Verlag, Boston .  

  25. Szendro , I. G. , PazO , D. , Rodriguez , M. A. and LOpez , J. M . 2007 . Spatiotemporal structure of Lyapunov vectors in chaotic coupled-map lattices . Phys. Rev. E 76 ( 2 ), 025202 . https://doi.org/10.1103/PhysRevE.76.025202. URL: http://link.aps.org/abstract/PRE/v76/e025202  

  26. Toth , Z. , Szunyogh , I. , Kalnay , E. and Iyengar , G . 1999 . Comments on: “Notes on the appropriateness of ‘bred modes’ for generating initial perturbations” . Tellus 51A ( 3 ), 442 – 449 . https://doi.org/10.1034/j.1600-0870.1999.t01-3-00008.x .  

  27. Tracton , M. S. and Kalnay , E . 1993 . Operational ensemble prediction at the national meteorological center: practical aspects . Wea. Forecast . 8 , 379 – 398 .  

  28. Wei , M. and Frederilcsen , J. S . 2004 . Error growth and dynamical vectors during Southern Hemisphere blocking. Nonlin. Processes Geophys . 11 ( 1 ), 99-118. URL: http://www.nonlin-processes-geophys.net/11/99/2004/  

  29. Wolfe , C. L. and Samelson , R. S . 2007 . An efficient method for recovering Lyapunov vectors from singular vectors . Tellus 59A ( 3 ), 355 – 366 . https://doi.org/10.1111/j.1600-0870.2007.00234.x .  

comments powered by Disqus