Start Submission Become a Reviewer

Reading: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic se...

Download

A- A+
Alt. Display

Original Research Papers

Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice

Authors:

James E. Overland ,

NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115, US
X close

Muyin Wang

JISAO/University of Washington, Seattle, WA 98195, US
X close

Abstract

Recent loss of summer sea ice in the Arctic is directly connected to shifts in northern wind patterns in the following autumn, which has the potential of altering the heat budget at the cold end of the global heat engine. With continuing loss of summer sea ice to less than 20% of its climatological mean over the next decades, we anticipate increased modification of atmospheric circulation patterns. While a shift to a more meridional atmospheric climate pattern, the Arctic Dipole (AD), over the last decade contributed to recent reductions in summer Arctic sea ice extent, the increase in late summer open water area is, in turn, directly contributing to a modification of large scale atmospheric circulation patterns through the additional heat stored in the Arctic Ocean and released to the atmosphere during the autumn season. Extensive regions in the Arctic during late autumn beginning in 2002 have surface air temperature anomalies of greater than 3 °C and temperature anomalies above 850 hPa of 1 °C. These temperatures contribute to an increase in the 1000–500 hPa thickness field in every recent year with reduced sea ice cover. While gradients in this thickness field can be considered a baroclinic contribution to the flow field from loss of sea ice, atmospheric circulation also has a more variable barotropic contribution. Thus, reduction in sea ice has a direct connection to increased thickness fields in every year, but not necessarily to the sea level pressure (SLP) fields. Compositing wind fields for late autumn 2002–2008 helps to highlight the baroclinic contribution; for the years with diminished sea ice cover there were composite anomalous tropospheric easterly winds of ∼1.4ms–1, relative to climatological easterly winds near the surface and upper troposphericwesterlies of ∼3 m s–1. Loss of summer sea ice is supported by decadal shifts in atmospheric climate patterns. A persistent positive Arctic Oscillation pattern in late autumn (OND) during 1988–1994 and in winter (JFM) during 1989–1997 shifted to more interannual variability in the following years. An anomalous meridional wind pattern with high SLP on the North American side of the Arctic—the AD pattern, shifted from primarily small interannual variability to a persistent phase during spring (AMJ) beginning in 1997 (except for 2006) and extending to summer (JAS) beginning in 2005.

How to Cite: Overland, J.E. and Wang, M., 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 62(1), pp.1–9. DOI: http://doi.org/10.1111/j.1600-0870.2009.00421.x
5
Views
1
Downloads
372
Citations
  Published on 01 Jan 2010
 Accepted on 22 Oct 2009            Submitted on 14 Mar 2009

References

  1. Angell , J. K . 2006 . Changes in the 300-mb North Circumpolar Vortex, 1963-2001 . J. Climate 19 , 2984 – 2994 .  

  2. Chapman , W. L. and Walsh , J. E . 2007 . Simulations of Arctic temperature and pressure by global coupled models . J. Climate 20 , 609 – 632 .  

  3. Francis , J. A. , Chan , W. , Leathers , D. J. , Miller , J. R. and Veron , D. E. 2009 . Winter Northern Hemisphere weather patterns remember summer Arctic seaice extent . Geophys. Res. Lett. 36 , L07503 , https://doi.org/10.1029/2009GL037274 .  

  4. Giles , K. A. , Laxon , S. W. and Ridout , A. L . 2008 . Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum . Geophys. Res. Lett . 35 , L22502 , https://doi.org/10.1029/2008GL035710 .  

  5. Holland , M. M. , Bitz , C. M. , Tremblay , B. and Bailey , D. A . 2008 . The role of natural versus forced change in future rapid summer Arctic ice loss. In: Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications Geophys. Monogr. Ser 180 (eds E. T. DeWeaver , C. M. Bitz and L. B. Tremblay ). AGU, Washington, DC , 133 – 150 .  

  6. Honda , M. , Inoue , J. and Yamane , S . 2009 . Influence of low Arctic seaice minima on anomalously cold Eurasian winters . Geophys. Res. Lett . 36 , L08707 , https://doi.org/10.1029/2008GL037079 .  

  7. Kutzbach , J . 1970 . Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure . Mon. Wea. Rev . 98 , 708 – 716 .  

  8. Kwok , R. , Cunningham , G. F. , Wensnahan , M. , Rigor , I. , Zwally , H. J. and co-authors . 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003 – 2008 . J. Geophys. Res. 114, C07005 , https://doi.org/10.1029/2009JC005312 .  

  9. Legates , D. R . 1993 . The effect of domain shapes on principal components analysis: a reply . Int. J. Climatol . 13 , 219 – 228 .  

  10. L’Heureux , M. L. , Kumar , A. , Bell , G. D. , Halpert , M. S. and Higgins , R. W . 2008 . Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline . Geophys. Res. Lett . 35 , L20701 , https://doi.org/10.1029/2008GL035205 .  

  11. Maslanilc , J. , Drobot , S. , Fowler , C. , Emery , W. and Barry , R . 2007 . On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions . Geophys. Res. Lett . 34 , L03711 , https://doi.org/10.1029/2006GL028269 .  

  12. Overland , J. E. and Guest , P. S . 1991 . The Arctic snow and air temperature budget over sea ice during winter . J. Geophys. Res . 96 , 4651 – 4662 .  

  13. Overland , J. E. and Wang , M . 2005 . The third Arctic climate pattern: 1930s and early 2000s . Geophys. Res. Lett . 32 , L23808 , https://doi.org/10.1029/2005GL024254 .  

  14. Overland , J. E. , Wang , M. and Salo , S . 2008 . The recent Arctic warm period . Tellus 60A , 589 – 597 .  

  15. Perovich , D. K. , Richter-Menge , J. A. , Jones , K. F. and Light , B . 2008 . Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007 . Geophys. Res. Lett . 35 , L11501 , https://doi.org/10.1029/2008GL034007 .  

  16. Quadrelli , R. and Wallace , J. M . 2004 . A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability . J. Climate 17 , 3728 – 3744 .  

  17. Rigor , I. G. and Wallace , J. M . 2004 . Variations in the age of Arctic sea-ice and summer sea-ice extent . Geophys. Res. Lett . 31 , L09401 , https://doi.org/10.1029/2004GL019492 .  

  18. Schweiger , A. J. , Lindsay , R. W. , Vavrus , S. and Francis , J. A . 2008 . Relationships between Arctic sea ice and clouds during autumn . J. Climate 21 , 4799 – 4810 .  

  19. Seierstad , I. A. and Bader , J . 2008 . Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO . Clim. Dyn . 33 , 937 – 943 .  

  20. Serreze , M. C. , Barrett , A. R , Stroeve , J. C. , Kindig , D. N. and Holland , M. M . 2009 . The emergence of surface-based Arctic amplification . The Ciyosphere 3 , 11 – 19 .  

  21. Singarayer , J. S. , Bamber , J. L. and Valdes , P. J . 2006 . Twenty-first-century climate impacts from a declining Arctic sea ice cover . J. Climate 19 , 1109 – 1125 .  

  22. Skeie , P . 2000 . Meridional flow variability over the Nordic Seas in the Arctic Oscillation framework . Geophys. Res. Lett . 27 , 2569 – 2572 .  

  23. Sokolova , E. , Dethloff , K. , Rinke , A. and Benkel , A . 2007 . Planetary and synoptic scale adjustment of the Arctic atmosphere to sea ice cover changes . Geophys. Res. Lett . 34 , L17816 , https://doi.org/10.1029/2007GL030218 .  

  24. Stroeve , J. , Holland , M. M. , Meier , W. , Scambos , T. and Serreze , M . 2007 . Arctic sea ice decline: faster than forecast . Geophys. Res. Lett . 24 , L09501 , https://doi.org/10.1029/2007GL029703 .  

  25. Thompson , D. W. J. , Wallace , J. M. and Hegerl , G. C . 2000 . Annular modes in the extratropical circulation. Part II: trends . J. Climate 13 , 1018 – 1036 .  

  26. Wang , J. , Zhang , J. , Watanabe , E. , Ikeda , M. , Mizobata , K. and co-authors . 2009 . Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett . 36 , L05706 , https://doi.org/10.1029/2008GL036706 .  

  27. Wang , M. and Overland , J. E . 2009 . A sea ice free summer Arctic within 30 years? Geophys. Res. Lett . 36 , L07502 , https://doi.org/10.1029/2009GL037820 .  

  28. Wu , B. , Wang , J. and Walsh , J. E . 2006 . Dipole Anomaly in the winter Arctic atmosphere and its association with sea ice motion . J. Climate 19 , 210 – 225 .  

  29. Zhang , X. , Sorteberg , A. , Zhang , J. , Gerdes , R. and Comiso , J. C . 2008 . Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system . Geophys. Res. Lett . 35 , L22701 , https://doi.org/10.1029/2008GL035607 .  

comments powered by Disqus