Start Submission Become a Reviewer

Reading: Can an atmospherically forced ocean model accurately simulate sea surface temperature during...

Download

A- A+
Alt. Display

Original Research Papers

Can an atmospherically forced ocean model accurately simulate sea surface temperature during ENSO events?

Authors:

A. Birol Kara,

Naval Research Laboratory, Oceanography Division, Bldg. 1009, Stennis Space Center, MS 39529, US
X close

Harley E. Hurlburt ,

Naval Research Laboratory, Oceanography Division, Bldg. 1009, Stennis Space Center, MS 39529, US
X close

Charlie N. Barron,

Naval Research Laboratory, Oceanography Division, Bldg. 1009, Stennis Space Center, MS 39529
X close

Alan J. Wallcraft,

Naval Research Laboratory, Oceanography Division, Bldg. 1009, Stennis Space Center, MS 39529, US
X close

E. Joseph Metzger

Naval Research Laboratory, Oceanography Division, Bldg. 1009, Stennis Space Center, MS 39529, US
X close

Abstract

The performance of an atmospherically forced ocean general circulationmodel (OGCM)in simulating daily andmonthly sea surface temperature (SST) is examined during the historical El Niño Southern Oscillation (ENSO) events during the time period 1993–2003. For this purpose, we use the HYbrid Coordinate Ocean Model (HYCOM) configured for the North Pacific north of 20°S at a resolution of ≈9Km. There is no assimilation of (or relaxation to) SST data and no date-specific assimilation of any data type. The ability of the model in simulating temporal variations of SST anomalies is discussed by comparing model results with two satellite-based SST products. The HYCOM simulation gives a basinaveraged monthly mean bias of 0.3 °C and rms difference of 0.6 °C over the North Pacific Ocean during 1993–2003. While the model is able to simulate SST anomalies with mean biases =0.5 °C in comparison to observations during most of the ENSO events, limitations in the accuracy of atmospheric forcing (specifically, net short-wave radiation) have some influence on the accuracy of simulations. This is specifically demonstrated during the 1998 transition period from El Nino to La Niña, when a record large SST drop of ≈7 °C occurred in the eastern equatorial Pacific Ocean.

How to Cite: Kara, A.B., Hurlburt, H.E., Barron, C.N., Wallcraft, A.J. and Metzger, E.J., 2010. Can an atmospherically forced ocean model accurately simulate sea surface temperature during ENSO events?. Tellus A: Dynamic Meteorology and Oceanography, 62(1), pp.48–61. DOI: http://doi.org/10.1111/j.1600-0870.2009.00422.x
  Published on 01 Jan 2010
 Accepted on 22 Oct 2009            Submitted on 8 Apr 2009

References

  1. Allan , R. P. , Ringer , M. A. , Pamment , J. A. and Slingo , A . 2004 . Simulation of the Earth’s radiation budget by the European Centre for Medium-Range Weather Forecasts 40-year reanalysis (ERA-40) . J. Geophys. Res . 109 , D18107 , https://doi.org/10.1029/2004JDO04816 .  

  2. Barron , C. N. and Smedstad , L. F . 2002 . Global river inflow within the Navy Coastal Ocean Model. Proc. Oceans 2002 MTS/IEEE Conference, 29-31 October, 1472 – 1479 .  

  3. Barron , C. N. and Kara , A. B . 2006 . Satellite-based daily SSTs over the global ocean . Geophys. Res. Lett . 33 , L15603 , https://doi.org/10.1029/2006GL026356 .  

  4. Behrenfeld , M. J. , Randerson , J. T. , McClain , C. R. , Feldman , G. C. , Los , S. O. and co-authors . 2001 . Biospheric primary production during an ENSO transition. Science 291 , 2594 – 2597 .  

  5. Bleck , R . 2002 . An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates . Ocean Modell . 4 , 55 – 88 .  

  6. Boyer , T. P. , Antonov , J. I. , Garcia , H. E. , Johnson , D. R. , Locarnini , R. A. and co-authors . 2006 . World Ocean Database 2005 , DVDs, NOAA Atlas NESDIS, Vol. 60 (ed. S. Levitus ), NOAA, Silver Spring, MD, 190 pp .  

  7. Carnes , M. R . 2009 . Description and evaluation of GDEM-V3.0. NRL Report NRL/MR/7330-09-9165. [Available from http://www7320.nrlssc.navy.mil/pubs.php.]  

  8. Casey , K. S. and Cornillon , P . 1999 . A comparison of satellite and in situ based sea surface temperature climatologies . J. Climate 12 , 1848 – 1863 .  

  9. Chassignet , E. P. , Hurlburt , H. E. , Metzger , E. J. , Smedstad , O. M. , Cummings , J. A. and co-authors . 2009 . US GODAE global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22 , 64 – 75 .  

  10. Enfield , D. B . 1996 . Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability . Geophys. Res. Lett . 23 , 3305 – 3308 .  

  11. Gibson , J. K. , Kallberg , P. , Uppala , S. , Hernandez , A. , Nomura , A. and co-authors . 1997 . ECMWF Re-Analysis Project Report Series: 1. ERA description (Version 2), 74 pp .  

  12. Hanley , D. E. , Bourassa , M. A. , O’Brien , J. J. , Smith , S. R. and Spade , E. R . 2003 . A quantitative evaluation of ENSO indices . J. Climate 16 , 1249 – 1258 .  

  13. Hurlburt , H. E. , Chassignet , E. P. , Cummings , J. A. , Kara , A. B. , Metzger , E. J. and co-authors . 2008 . Eddy-resolving global ocean prediction. In: Ocean Modeling in an Eddying Regime (eds M. Hecht and H. Hasumi ). Geophys. Monograph 177, 353-381. Amer. Geophys. Union, Washington, DC.  

  14. Kara , A. B. and Barron , C. N . 2007 . Fine-resolution satellite-based daily sea surface temperatures over the global ocean . J. Geophys. Res . 112 , C05041 , https://doi.org/10.1029/2006JC004021 .  

  15. Kara , A. B. , Rochford , P. A. and Hurlburt , H. E . 2000a . Efficient and accurate bulk parameterizations of air—sea fluxes for use in general circulation models . J. Atmos. Oceanic TechnoL 17 , 1421 – 1438 .  

  16. Kara , A. B. , Rochford , P. A. and Hurlburt , H. E . 2000b . An optimal definition for ocean mixed layer depth . J. Geophys. Res . 105 , 16 803-16 821 .  

  17. Kara , A. B. , Wallcraft , A. J. and Hurlburt , H. E . 2003 . Climatological SST and MLD simulations from NLOM with an embedded mixed layer . J. Atmos. Oceanic TechnoL 20 , 1616 – 1632 .  

  18. Kara , A. B. , Wallcraft , A. J. and Hurlburt , H. E . 2005a . A new solar radiation penetration scheme for use in ocean mixed layer studies: an application to the Black Sea using a fine resolution HYbrid Coordinate Ocean Model (HYCOM) . J. Phys. Oceanogr . 35 , 13 – 32 .  

  19. Kara , A. B. , Hurlburt , H. E. , Wallcraft , A. J. and Bourassa , M. A . 2005b . Black Sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales . J. Climate 18 , 5266 – 5293 .  

  20. Kara , A. B. , Metzger , E. J. , Hurlburt , H. E. , Wallcraft , A. J. and Chassignet , E. P . 2008 . Multistatistics metric evaluation of ocean general circulation model sea surface temperature: application to 0.08° Pacific Hybrid Coordinate Ocean Model simulations . J. Geophys. Res . 113 , C12018 , https://doi.org/10.1029/2008JC004878 .  

  21. Kara , A. B. , Barron , C. N. and Boyer , T. P . 2009a . Evaluations of SST climatologies in the tropical Pacific Ocean . J. Geophys. Res . 114 , CO2021 , https://doi.org/10.1029/2008JC004909 .  

  22. Kara , A. B. , Wallcraft , A. J. , Hurlburt , H. E. and Loh , W.-Y . 2009b . Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean? J. Geophys. Res . 114 , D05101 , https://doi.org/10.1029/2008JD010420 .  

  23. Kara , A. B. , Wallcraft , A. J. , Hurlburt , H. E. and Loh , W.-Y . 2009c . Quantifying SST errors from an OGCM in relation to atmospheric forcing variables , Ocean Modell . 29 , 43 – 57 .  

  24. Large , W. G. , McWilliams , J. C. and Doney , S. C . 1994 . Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization . Rev. Geophys . 32 , 363 – 403 .  

  25. Lau , K. M. , Wu , H. T. and Bony , S . 1997 . The role of large scale atmospheric circulation in the relationship between tropical convection and sea surface temperature . J. Climate 10 , 381 – 392 .  

  26. Locarnini , R. A. , Mishonov , A. V. , Antonov , J. I. , Boyer , T. P. and Garcia , H. E . 2005 . World Ocean Atlas 2005, vol. 1, Temperature , edited by S. Levitus , NOAA Atlas NESDIS 61 , 182 pp. , U.S. Government Printing Office, Washington, DC.  

  27. McPhaden , M. J . 1999 . Genesis and evolution of the 1997-98 El Nifio . Science 283 , 950 – 954 .  

  28. Mitchell , T. P. and Wallace , J. M . 1992 . The annual cycle in equatorial convection and sea surface temperature . J. Climate 5 , 1140 – 1156 .  

  29. Murphy , A. H . 1995 . The coefficients of correlation and determination as measures of performance in forecast verification . Wea. Forecast . 10 , 681 – 688 .  

  30. Nagura , M. , Ando , K. and Mizuna , K . 2008 . Pausing the ENSO cycle: a case study from 1998 to 2002 . J. Climate 21 , 342 – 363 .  

  31. Nakajima , K. , Toyodo , E. , Ishiwatari , M. , Takehiro , S.-I. and Hayashi , Y.-Y . 2004 . Initial development of tropical precipitation patterns in response to a local warm SST area: an aqua-planet ensemble study . J. Meteor Soc. Japan 82 , 1483 – 1504 .  

  32. Perry , G. D. , Duffy , P. B. and Miller , N. L . 1996 . An extended data set of river discharges for validation of general circulation models . J. Geophys. Res . 101 , 21 339-21 349 .  

  33. Reynolds , R. W. , Rayner , N. A. , Smith , T. M. and Stokes , D. C . 2002 . An improved in-situ and satellite SST analysis for climate . J. Climate 15 , 1609 – 1625 .  

  34. Smith , W. H. F. and Sandwell , D. T . 1997 . Global sea floor topography from satellite altimetry and ship depth soundings . Science 277 , 1956 – 1962 .  

  35. Wallcraft , A. J. , Kara , A. B. , Hurlburt , H. E. and Rochford , P. A . 2003 . The NRL Layered Global Ocean Model (NLOM) with an embedded mixed layer submodel: formulation and tuning . J. Atmos. Oceanic TechnoL 20 , 1601 – 1615 .  

comments powered by Disqus