Start Submission Become a Reviewer

Reading: Salinity-dominated thermohaline circulation in sill basins: can two stable equilibria exist?

Download

A- A+
Alt. Display

Original Research Papers

Salinity-dominated thermohaline circulation in sill basins: can two stable equilibria exist?

Authors:

Johan Nilsson ,

Department of Meteorology, Stockholm University, SE-10691, Stockholm, SE
X close

Gösta Walin

Department of Earth Sciences, Göteborg University, S-40530, Göteborg, SE
X close

Abstract

The dynamics of a salinity-dominated thermohaline circulation in a sill basin is examined using a two-layer model. A prescribed freshwater supply acts to establish a stable stratification, working against a prescribed destabilizing temperature difference. The upper-layer outflow is in geostrophic balance and the upwelling is driven by a fixed energy supply to small-scale vertical mixing. The salinity-dominated flow may have two qualitatively different modes of operation. First, a mixing-limited regime, where the upper layer is shallower than the sill and the flow strength decreases with increasing density difference. Second, an overmixed regime, where the upper layer extends below the sill and the flow strength increases with density difference. Possibly, mixing-limited and overmixed equilibria, with widely different upper-layer depths, can exist for the same external parameters. In such cases, transitions between the two regimes are associated with abrupt changes of the salinity, depth and flow strength. The present results may be of relevance for ocean circulation in glacial climates and for interpretations of marine palaeo data, issues that are briefly discussed in the context of the Arctic Ocean.

How to Cite: Nilsson, J. and Walin, G., 2010. Salinity-dominated thermohaline circulation in sill basins: can two stable equilibria exist?. Tellus A: Dynamic Meteorology and Oceanography, 62(2), pp.123–133. DOI: http://doi.org/10.1111/j.1600-0870.2009.00428.x
15
Citations
  Published on 01 Jan 2010
 Accepted on 24 Nov 2009            Submitted on 19 May 2009

References

  1. Aaboe , S. and Nøst , O.-A . 2008 . A diagnostic model of the Nordic Seas and Arctic Ocean circulation: quantifying the effects of a variable bottom density along a sloping topography . J. Phys. Oceanogr 38 , 2685 – 2703 .  

  2. Bryan , F . 1987 . Parameter sensitivity of primitive equation ocean general circulations models . J. Phys. Oceanogr . 17 , 970 – 985 .  

  3. Gnanadesilcan , A . 1999 . A simple predictive model for the structure of the oceanic pycnocline . Science 283 , 2077 – 2079 .  

  4. Greenspan , H. P . 1968 . The Theory of Rotating Fluids 1st Edition . Cambridge University Press, Cambridge , UK .  

  5. Guan , Y. G. and Huang , R. X . 2008 . Stommel’s box model of thermoha-line circulation revisited—the role of mechanical energy supporting mixing and the wind-driven gyration . J. Phys. Oceanogr 38 , 909 – 917 .  

  6. Huang , R. X . 1999 . Mixing and energetics of the oceanic thermohaline circulation . J. Phys. Oceanogr 29 , 727 – 746 .  

  7. Iovino , D. , Straneo , F. and Spall , M . 2008 . On the effect of a sill on dense water formation in a marginal sea . J. Mar Res . 66 , 325 – 345 .  

  8. Jakobsson , M . 2002 . Hypsometry and volume of the Arctic Ocean and its constituent seas . Geochem. Geophys. Geosyst . 3 , 1 – 18 .  

  9. Jakobsson , M. , Backman , J. , Rudels , B. , Nycander , J. , Frank , M. and co-authors . 2007 . The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447 , 986 – 990 .  

  10. Jakobsson , M. , Polyak , L. , Edwards , M. and Coakley , J. K. B . 2008 . Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge . Earth Surf Process. Land-forms 33 , 526 – 545 .  

  11. Kato , H. and Phillips , O. M . 1969 . On the penetration of a turbulent layer into a stratified fluid . J. Fluid Mech . 37 , 643 – 655 .  

  12. Kuhlbrodt , T. , Griesel , A. , Montoya , M. , Levermann , A. , Hofmann , M. and co-authors . 2007 . On driving processes of the Atlantic meridional overturning circulation. Rev. Geophys . 45 , https://doi.org/10.1029/2004RG000166 .  

  13. Longworth , H. , Marotzke , J. and Stocker , T. F . 2005 . Ocean gyres and abrupt change in the thermohaline circulation: a conceptual analysis . J. Climate 18 , 2403 – 2416 .  

  14. Lyle , M . 1997 . Could early Cenozoic thermohaline circulation have warmed the poles? Paleoceanography 12 , 161 – 167 .  

  15. Marchal , O. , Jackson , C. , Nilsson , J. , Paul , A. and Stocker , T. E 2007 . Buoyancy-driven flow and nature of vertical mixing in a zonally-averaged model. In: Past and Future Changes of the Ocean’s Meridional Overturning Circulation: Mechanisms and Impacts Volume 173 (eds A. Schmittner , J. Chiang , and S. Hemming ). AGU Geophysical Monograph, American Geophysical Union , Washington, DC , 33 – 52 .  

  16. Marotzke , J ., 1996 . Analysis of thermohaline feedbacks. In: Decadal Climate Variability; Dynamics and Predicatbility (eds D. L. T. Anderson , and J. Willebrand ). Volume 1,44 NATO ASI Series, Springer-Verlag, Heidelberg, Germany , 334 – 378 .  

  17. Marotzke , J . 2000 . Abrupt climate change and the thermohaline circulation: mechanisms and predictability . P. Natl. Acad. Sci. U.S.A . 97 , 1347 – 1350 .  

  18. Marshall , J. and Radko , T . 2006 . A model of the upper branch of the meridional overturning of the southern ocean . Prog. in Oceanogr 70 , 331 – 345 .  

  19. Mohammad , R. and Nilsson , J . 2004 . The role of diapycnal mixing for the equilibrium response of thermohaline circulation . Ocean Dyn . 54 , 54 – 65 .  

  20. Mohammad , R. and Nilsson , J . 2006 . Symmetric and asymmetric modes of the thermohaline circulation . Tellus 58A , 616 – 627 .  

  21. Nilsson , J. , Björk , G. , Rudels , B. , Winsor , P. and Tones , D . 2008 . Liquid freshwater transport and Polar Surface Water characteristics in the East Greenland Current during the A0-02 oden expedition . Prog. Oceanogr . 78 , 45 – 57 .  

  22. Nilsson , J. , Brostrom , G. and Walin , G . 2003 . The thermohaline circulation and vertical mixing: does weaker density stratification give stronger overturning? J. Phys. Oceanogr 33 , 2781 – 2795 .  

  23. Nilsson , J. and Walin , G . 2001 . Freshwater forcing as a booster of thermohaline circulation . Tellus 53A , 629 – 641 .  

  24. Nilsson , J. , Walin , G. and Brostrom , G . 2005 . Thermohaline circulation induced by bottom friction in sloping-boundary basins . J. Mar Res . 63 , 705 – 728 .  

  25. Nøst , O. A. and Isachsen , P. E . 2003 . The large-scale time-mean ocean circulation in the Nordic Seas and the Arctic Ocean estimated from simplified dynamics . J. Mar Res . 61 , 175 – 210 .  

  26. Park , Y.-G . 1999 . The stability of thermohaline circulation in a two-box model . J. Phys. Oceanogr 29 , 3101 – 3110 .  

  27. Park , Y.-G. and Bryan , K . 2000 . Comparison of thermally driven circulation from a depth-coordinate model and an isopycnal model. Part I: scaling-law sensitivity to vertical diffusivity . J. Phys. Oceanogr . 30 , 590 – 605 .  

  28. Polyak , L. , Edwards , M. H. , Coakley , B. J. and Jakobsson , M . 2001 . Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms . Nature 410 , 453 – 457 .  

  29. Pratt , L. J. and Spall , M. A . 2008 . Circulation and exchange in choked marginal seas . J. Phys. Oceanogr . 38 , 2639 – 2661 .  

  30. Rudels , B . 1995 . The thermohaline circulation of the Artie Ocean and the Greenland Sea . Phil. Trans. R. Soc. Lond . 352 , 287 – 299 .  

  31. Rudels , B. , Björk , G. , Lake , I. , Nohr , C. , Nilsson , J. and co-authors . 2005 . The interaction between waters from the Arctic Ocean and the Nordic Seas north of the Fram Strait and along the East Greenland Current: results from the A0-02 Oden expedition. J. Mar SysL 55 , 1 – 30 .  

  32. Span , M. A . 2004 . Boundary currents and water mass transformation in marginal seas . J. Phys. Oceanogr . 34 , 1197 – 1213 .  

  33. Stigebrandt , A . 1981 . A model for the thickness of and salinity of the upper layer in the Arctic Ocean and the relationship between the ice thickness and some external parameters . J. Phys. Oceanogr . 11 , 1407 – 1422 .  

  34. Stigebrandt , A . 1985 . On the hydrographic and ice conditions in the northern North Atlantic during different phases of a glaciation cycle . Palaeogeogr., Palaeoclimatol., Palaeoecol . 50 , 303 – 321 .  

  35. Stommel , H. M . 1961 . Thermohaline convection with two stable regimes of flow . Tellus 13 , 224 – 230 .  

  36. Stommel , H. M. and Farmer , H. G . 1953 . Control of salinity in an estuary by a transition . J. Mar Res . 12 , 13 – 20 .  

  37. Thual , O. and McWilliams , J. C . 1992 . The catastrophe structure of thermohaline convection in a two-dimensional fluid model and comparison with low-order box models . Geophys. Astrophys. Fluid Dyn . 64 , 67 – 95 .  

  38. Walin , G . 1985 . The thermohaline circulation and the control of ice ages . Palaeogeogr., Palaeoclimatol., Palaeoecol . 50 , 323 – 332 .  

  39. Walin , G . 1990 . On the possibility of a reversed thermohaline circulation. In: Nordic Perspectives on Oceanography (ed. P. Lundberg ).Kungl. Vetenskaps-och Vitterhets-Samhället i Goteborg., (Available from the author, Earth Science Center, Göteborg University, Box 460,40530 Göteborg, Sweden), 145 – 154 .  

  40. Walin , G ., Brostro M, G. , Nilsson , J. and Dahl , O. 2004. Baroclinic boundary currents with downstream decreasing buoyancy: a study of an idealized Nordic Sea system. J. Mar Res . 62 , 517 – 543 .  

  41. Welander , P . 1971 . The thermocline problem . Phil. Trans. R. Soc. Lond. A . 270 , 415 – 421 .  

  42. Welander , P . 1986 . Thermohaline effects in the ocean circulation and related simple models. In: Large-Scale Transport Processes in the Oceans and Atmosphrere (eds J. Willebrand , and D. L. T. Anderson ). D. Reidel Publishing Company, Dordrecht , The Netherlands , 163 – 200 .  

  43. Zhang , J. , Schmitt , R. W. and Huang , R. X . 1999 . The relative influence of diapycnal mixing and hydrological forcing on the stability of thermohaline circulation . J. Phys. Oceanogr 29 , 1096 – 1108 .  

comments powered by Disqus