Start Submission Become a Reviewer

Reading: Horizontal convection with a non-linear equation of state: generalization of a theorem of Pa...

Download

A- A+
Alt. Display

Original Research Papers

Horizontal convection with a non-linear equation of state: generalization of a theorem of Paparella and Young

Author:

Jonas Nycander

Department of Meteorology, Stockholm University, 106 91 Stockholm, SE
X close

Abstract

An upper bound is derived for the total dissipation rate in an ocean forced exclusively by surface fluxes of heat and freshwater, assuming a non-linear equation of state. This generalizes the upper bound found by Paparella and Young, which is valid for a flow forced by an imposed temperature distribution at the surface and a linear equation of state. Like this previous result, the present one shows that the dissipation rate vanishes in the limit of vanishing molecular diffusivity of temperature and salinity, if the range of temperatures and salinities occurring in the fluid is regarded as given. A numerical evaluation for realistic ocean parameters shows that the upper bound is two orders of magnitude smaller than present estimates of the energy transformation involved in the deep ocean circulation. This supports the conclusion that mechanical forcing by winds and tides is necessary to sustain the deep ocean circulation.

How to Cite: Nycander, J., 2010. Horizontal convection with a non-linear equation of state: generalization of a theorem of Paparella and Young. Tellus A: Dynamic Meteorology and Oceanography, 62(2), pp.134–137. DOI: http://doi.org/10.1111/j.1600-0870.2009.00429.x
6
Citations
  Published on 01 Jan 2010
 Accepted on 26 Nov 2009            Submitted on 20 Aug 2009

References

  1. Aas , E . 2006 . Vertical transfer of infrared radiation in water. Univ. Oslo, Dept. Geosciences, MetOs, Rep. No. 129, ISBN 82-91885- 33 – 8 .  

  2. Coman , M. , Hughes , G. and Griffiths , R . 2006 . Sandstriim’s experiments revisited . J. Mar. Res . 64 ( 6 ), 783 – 796 .  

  3. Curcio , J. A. and Petty , C. C . 1951 . The near infrared absorption spectrum of liquid water . J. Opt. Soc. Am . 41 , 302 – 304 .  

  4. Gill , A. E . 1982 . Atmosphere-Ocean Dynamics . Academic Press , San Diego .  

  5. Guan , Y. P. and Huang , R. X . 2008 . Stommel’s box model of ther-mohaline circulation revisited—the role of mechanical energy supporting mixing and the wind-driven gyration . J. Phys. Oceanogr 38 , 909 – 917 .  

  6. Haney , R. L . 1971 . Surface thermal boundary condition for ocean circulation models . J. Phys. Oceanogr 1 , 241 – 248 .  

  7. Kuhlbrodt , T . 2008 . On Sandstrom’s inferences from his tank experiments—a hundred years later . Tellus 60A , 819 – 836 .  

  8. Laube , M. and Holler , H . 1988 . Cloud physics. In: Landolt-Börstein Numerical Data and Functional Relationships in Science and Technology. New Series, Group V Geophysics Volume 4: Meteorology, Subvolume B Physical and Chemical Properties of the Air. Springer, Berlin , 1 – 109 .  

  9. Lauscher , F . 1955 . Sonnen-und Himmelsstrahlung im Meer und in Gewässern. In: Handbuch der Geophysik Volume 8. Springer, Berlin-Heidelberg-Wien , 723 – 768 .  

  10. Mauritzen , C . 1996 . Production of the dense overflow waters feeding the North Atlantic across the Greenland—Scotland Ridge. Part 1. Evidence for a revised circulation scheme . Deep Sea Research 1 43 , 769 – 806 .  

  11. Miller , R. C. 1968 . A Thermally Convecting Fluid Heated Non-uniformly from Below . Unpublished PhD Thesis, Massachusets Institute of Technology , 171 .  

  12. Mullarney , J. C. , Griffiths , R. W. and Hughes , G . 0. 2004 . Convection driven by differential heating at a horizontal boundary . J. Fluid. Mech . 516 , 181 – 209 .  

  13. Paparella , F. and Young , W. R . 2002 . Horizontal Convection is non-turbulent . J. Fluid Mech . 466 , 205 – 214 .  

  14. Pierce , D. W. and Rhines , P. B . 1996 . Convective building of a pycno-cline: laboratory experiments . J. Phys. Oceanogr 26 ( 2 ), 176 – 190 .  

  15. Pope , R. M. and Fry , E. S . 1997 . Absorption spectrum (380-700 nm) of pure water. IL Integrating cavity measurements . AppL Opt . 36 , 8710 – 8723 .  

  16. Rossby , T . 1965 . On thermal convection driven by non-uniform heating from below: an experimental study . Deep-Sea Res . 12 , 9 – 16 .  

  17. Rossby , T . 1998 . Numerical experiments with a fluid heated non-uniformly from below . Tellus 50A , 242 – 257 .  

  18. Sandström , J. W . 1908 . Dynamicsche Versuche mit Meerwasser . Annalen der Hydrographie under Martimen Meteorologie 36 , 6 – 23 .  

  19. Sandström , J. W . 1916 . Meteorologische Studien im schwedis-chen Hochgebirge. Göteborgs K. Vetenskaps-och Vitterhetssamhalles Handl., Ser 4 22 ( 2 ), 48 .  

  20. Siggers , J. H. , Kerswell , R. R. and Balmforth , N. J . 2004 . Bounds on horizontal convection . J. Fluid Mech . 517 , 55 – 70 .  

  21. Spall , M. A . 2004 . Boundary currents and watermass transformation in marginal seas . J. Phys. Oceanogr . 34 , 1197 – 1213 .  

  22. Spall , M. A . 2008 . Low-frequency interaction between horizontal and overturning gyres in the ocean . Geophys. Res. Lett . 35 , L18614 , https://doi.org/10.1029/2008GL035206 .  

  23. Sveen , J. K . 2004 . An introduction to matpiv v.1.6.1. Eprint no. 2, ISSN 0809-4403, Dept. of Mathematics, University of Oslo, http://www.math.uio.no/̴jks/matpiv.  

  24. Walin , G. , Brostrom , G. , Nilsson , J. and Dahl , O. 2004. Baroclinic boundary currents with downstream decreasing buoyancy: a study of an idealized Nordic Seas system . J. Mar Res . 62 , 517 – 543 .  

  25. Wang , W. and Huang , R. X . 2005 . An experimental study on thermal circulation driven by horizontal differential heating . J. Fluid Mech . 540 , 49 – 73 .  

  26. Wells , M. G. and Wettlaufer , J. S . 2008 . Circulation in Lake Vostock: a laboratory analogue study . Geophys. Res. Lett . 35 , L03501 , https://doi.org/10.1029/2007GL032162 .  

  27. Wählin , A. K. and Johnson , H. L . 2009 . The salinity, heat and buoyancy budgets of a coastal current in a marginal sea . J. Phys. Oceanogr 39 , 2562 – 2580 .  

  28. Zoloratev , V. M. and Demin , A. V . 1977 . Optical constants of water over a broad range of wavelengths, 0.1 Å-1 m. Opt. Spectrosc , 43 , 157 – 161 , (U.S. version) .  

comments powered by Disqus