Start Submission Become a Reviewer

Reading: 1D+3DVar assimilation of radar reflectivity data: a proof of concept

Download

A- A+
Alt. Display

Original Research Papers

1D+3DVar assimilation of radar reflectivity data: a proof of concept

Authors:

Olivier Caumont ,

CNRM/GAME (Météo-France/CNRS), 31057 Toulouse, FR
X close

Véronique Ducrocq,

CNRM/GAME (Météo-France/CNRS), 31057 Toulouse, FR
X close

Éric Wattrelot,

CNRM/GAME (Météo-France/CNRS), 31057 Toulouse, FR
X close

Geneviève Jaubert,

CNRM/GAME (Météo-France/CNRS), 31057 Toulouse, FR
X close

Stéphanie Pradier-Vabre

CNRM/GAME (Météo-France/CNRS), 31057 Toulouse, FR
X close

Abstract

An original one-dimensional (1-D) retrieval followed by a three-dimensional variational (1D+3DVar) assimilation technique is being developed to assimilate volumes of radar reflectivity data in the high-resolution numerical weather prediction Arome model.

The good performance of the 1-D retrieval is shown for an isolated storm over southwestern France through an observing system simulation experiment. The full method is applied with real data to a flash-flood event, which occurred in a mountainous area. For this complex case, the assimilation of reflectivity data improves short-term precipitation forecasts. The assimilation of reflectivity data has a positive impact on the convective system’s dynamics by feeding the cold pool under the storm, which controls the intensity and location of the updrafts. A one-hourly update cycle of 3 h further improves these results.

A sensitivity study is also presented to evaluate the assimilation method for this flash-flood event in different conditions. The smoothing coefficient involved in the 1-D retrieval is shown to have a very small impact on analyses and quantitative precipitation forecasts. The assimilation of reflectivity data is found to be able to cause the creation of a cold pool, which modifies favourably the precipitation quantitative forecast. Finally, results from an 8-d-long assimilation cycle are presented.

How to Cite: Caumont, O., Ducrocq, V., Wattrelot, É., Jaubert, G. and Pradier-Vabre, S., 2010. 1D+3DVar assimilation of radar reflectivity data: a proof of concept. Tellus A: Dynamic Meteorology and Oceanography, 62(2), pp.173–187. DOI: http://doi.org/10.1111/j.1600-0870.2009.00430.x
3
Views
1
Downloads
78
Citations
  Published on 01 Jan 2010
 Accepted on 14 Aug 2009            Submitted on 16 Feb 2009

References

  1. Arnold , C. P. Jr. , and Dey , C. H . 1986 . Observing-systems simulation experiments: past, present, and future . Bull. Am. Meteor Soc . 67 ( 6 ), 687 – 695 . https://doi.org/10.1175/1520-0477(1986)0672.0.00;2 .  

  2. Berre , L . 2000 . Estimation of synoptic and mesoscale forecast error covariances in a limited-area model . Mon. Wea. Rev . 128 ( 3 ), 644 – 667 . https://doi.org/10.1175/1520-0493(2000)1282.0.00;2 .  

  3. Bielli , S. and Roux , F . 1999 . Initialization of a cloud-resolving model with airborne Doppler radar observations of an oceanic tropical convective system . Mon. Wea. Rev . 127 ( 6 ), 1038 – 1055 . https://doi.org/10.1175/1520-0493(1999)1272.0.00;2 .  

  4. Bouttier , F . 2003 . The AROME mesoscale project , Proceedings of the 2003 ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom. http://www.ecmwtint/publications/library/do/references/show?id= 86068 .  

  5. Bouttier , F . 2007 . Arome, avenir de la prévision régionale (Arome, a next fine-scale numerical weather prediction model). La Météorologie 58 , 12 – 20 (in French) .  

  6. Caumont , O. , Ducrocq , V , Delrieu , G. , Gosset , M ., Parent du Châtelet , J. and co-authors. 2006. A radar simulator for high-resolution non-hydrostatic models. J. Atmos. Oceanic TechnoL 23 ( 8 ), 1049 – 1067 . https://doi.org/10.1175/JTECH1905.1 .  

  7. Chancibault , K. , Anquetin , S. , Ducrocq , V. and Saulnier , G.-M . 2006 . Hydrological evaluation of high-resolution precipitation forecast of the Gard flash-flood event (8-9 September 2002) . Quart. J. Roy. Meteor Soc . 132 , 1091 – 1117 . https://doi.org/10.1256/qj.04.164 .  

  8. Delrieu , G. , Creutin , J.-D. and Andrieu , H . 1995 . Simulation of radar mountain returns using a digitized terrain model . J. Atmos. Oceanic TechnoL 12 ( 5 ), 1038 – 1049 . https://doi.org/10.1175/1520-0426(1995)0122.0.00;2 .  

  9. Delrieu , G. , Ducrocq , V. , Gaume , É. , Nicol , J. , Payrastre , O. and co-authors . 2005 . The catastrophic flash-flood event of 8-9 September 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor 6 ( 1 ), 34 – 52 . https://doi.org/10.1175/JHM-400.1 .  

  10. Ducrocq , V , Lafore , J.-P. , Redelsperger , J.-L. and Orain , E 2000 . Initialization of a fine-scale model for convective-system prediction: a case study . Quart. J. Roy. Meteor Soc . 126 ( 570 ), 3041 – 3065 . https://doi.org/10.1002/qj.49712657004 .  

  11. Ducrocq , V , Ricard , D. , Lafore , J.-P. and Orain , F . 2002 . Storm-scale numerical rainfall prediction for five precipitating events over France: on the importance of the initial humidity field . Wea. Forecast . 17 ( 6 ), 1236 – 1256 . https://doi.org/10.1175/1520-0434(2002)0172.0.00;2 .  

  12. Ducrocq , V ., Nuissier , O. , Ricard , D. , Lebeaupin , C. and Thouvenin , T. 2008. A numerical study of three catastrophic precipitating events over southern France. II: mesoscale triggering and stationarity factors. Quart. J. Roy. Meteor. Soc . 134 ( 630 ), 131 – 145 . https://doi.org/10.1002/qj.199 .  

  13. Fischer , C. , Montmerle , T. , Berre , L. , Auger , L. and Ştefänescu , S. E . 2005 . An overview of the variational assimilation in the AL-ADIN/France numerical weather-prediction system . Quart. J. Roy. Meteor Soc . 131 ( 613 ), 3477 – 3492 . https://doi.org/10.1256/qj.05.115 .  

  14. Hu , M. , Weygandt , S. S. , Xue , M. and Benjamin , S. G . 2007 . Development and testing of a new cloud analysis package using radar, satellite, and surface cloud observations within GSI for initializing Rapid Refresh, In: Proceedings of the 22nd Conf on Weather Analysis and Forecasting/18th Conf on Numerical Weather Prediction, Amer. Meteor. Soc., Park City, UT . Abstract no. P 2 . 5 .  

  15. Jaubert , G. , Auger , L. , Colombon , N. , Ducrocq , V. and Bouttier , E 2005 . Meso-gamma 3D-Var assimilation of surface measurements on heavy rain events: impact on short range high resolution simulations, World Weather Research Programme Symposium on Nowcasting and Very Short Range Forecasting (W5N05), Toulouse, France . Abstract no . 3 . 15 .  

  16. Jones , C. D. and Macpherson , B . 1997 . A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model . Meteorol. AppL 4 , 269 – 277 .  

  17. Kim , M.-J. , Weinman , J. A. , Olson , W. S. , Chang , D.-E. , Skofronick-Jackson , G. and co-authors . 2008 . A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res . 113 ( D09201 ). https://doi.org/10.1029/2007JDO08589 .  

  18. Kummerow , C. , Olson , W. S. and Giglio , L . 1996 . A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors . IEEE Trans. Geosci. Remote Sens . 34 ( 5 ), 1213 – 1232 . https://doi.org/10.1109/36.536538 .  

  19. Kummerow , C. , Hong , Y. , Olson , W. S. , Yang , S. , Adler , R. E and co-authors . 2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. AppL Meteor . 40 ( 11 ), 1801 – 1820 . https://doi.org/10.1175/1520-0450(2001)0402.0.00;2 .  

  20. Lafore , J.-P. , Stein , J. , Asencio , N. , Bougeault , P. , Ducrocq , V. and co-authors . 1998 . The meso-NH atmospheric simulation system. Part I: adiabatic formulation and control simulations. Scientific objectives and experimental design. Ann. Geophys . 16 ( 1 ), 90 – 109 .  

  21. Lin , Y. , Ray , P. S. and Johnson , K. W . 1993 . Initialization of a modeled convective storm using Doppler radar-derived fields . Mon. Wea. Rev . 121 ( 10 ), 2757 – 2775 . https://doi.org/10.1175/1520-0493(1993)1212.0.00;2 .  

  22. Lindskog , M. , Salonen , K. , Järvinen , H. and Michelson , D. B . 2004 . Doppler radar wind data assimilation with HIRLAM 3DVAR . Mon. Wea. Rev . 132 ( 5 ), 1081 – 1092 . https://doi.org/10.1175/1520-0493(2004)1322.0.00;2 .  

  23. Lopez , P. and Bauer , P . 2007 . “1D+4DVAR” assimilation of NCEP Stage-IV radar and gauge hourly precipitation data at ECMWF . Mon. Wea. Rev . 135 ( 7 ), 2506 – 2524 . https://doi.org/10.1175/MWR3409.1 .  

  24. Lorene , A. C . 1986 . Analysis methods for numerical weather prediction . Quart. J. Roy. Meteor Soc . 112 , 1177 – 1194 .  

  25. Marécal , V. and Mahfouf , J.-F . 2002 . Four-dimensional variational assimilation of total column water vapour in rainy areas . Mon. Wea. Rev . 130 ( 1 ), 43 – 58 . https://doi.org/10.1175/1520-0493(2002)1302.0.00;2 .  

  26. Marécal , V. and Mahfouf , J.-F . 2003 . Experiments on 4D-Var assimilation of rainfall data using an incremental formulation . Quart. J. Roy. Meteor Soc . 129 ( 594 ), 3137 – 3160 . https://doi.org/10.1256/003590003769682219 .  

  27. Montmerle , T. and Faccani , C . 2009 . Mesoscale assimilation of radial velocities from Doppler radar in a pre-operational framework . Mon. Wea. Rev . 137 ( 6 ), 1939 – 1953 . https://doi.org/10.1175/2008MWR2725.1 .  

  28. Nagarajan , B. , Yau , M. K. and Fillion , L . 2006 . A numerical study of the 1996 Saguenay flood cyclone: Effect of assimilation of precipitation data on quantitative precipitation forecasts . Mon. Wea. Rev . 134 ( 5 ), 1371 – 1388 . https://doi.org/10.1175/MWR3128.1 .  

  29. Nuissier , O. , Ducrocq , V. , Ricard , D. , Lebeaupin , C. and Anquetin , S . 2008 . A numerical study of three catastrophic precipitating events over southern France. I: numerical framework and synoptic ingredients . Quart. J. Roy. Meteor Soc . 134 ( 630 ), 111 – 130 . https://doi.org/10.1002/qj.200 .  

  30. Olson , W. S. , Kummerow , C. D. , Heymsfield , G. M. and Giglio , L . 1996 . A method for combined passive-active microwave retrievals of cloud and precipitation profiles . J. AppL Meteor 35 ( 10 ), 1763 – 1789 . https://doi.org/10.1175/1520-0450(1996)0352.0.CO;2 .  

  31. Olson , W. S. , Kummerow , C. D. , Hong , Y. and Tao , W.-K . 1999 . Atmospheric latent heating distributions in the tropics derived from satellite passive microwave radiometer measurements . J. AppL Meteor . 38 ( 6 ), 633 – 664 . https://doi.org/10.1175/1520-0450(1999)0382.0.00;2 .  

  32. Parent du Chätelet , J. , Perier , L. , Do Khac , K. and Roquain , P. 2001. Castor2: a new computer for the French radar network , Proc. 30th Int Conf on Radar Meteorology, Amer. Meteor. Soc., Munich, Germany , 82 – 83 .  

  33. Schelleng , J. C. , Burrows , C. R. and Ferrell , E. B . 1933 . Ultra-short-wave propagation . Proc. IRE 21 ( 3 ), 427 – 463 .  

  34. Stephan , K. , Klink , S. and Schraff , C . 2008 . Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD . Quart. J. Roy. Meteor Soc . 134 ( 634 ), 1315 – 1326 . https://doi.org/10.1002/qj.269 .  

  35. Sun , J. and Crook , N. A . 1997 . Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: model development and simulated data experiments . J. Atmos. Sci . 54 ( 12 ), 1642 – 1661 . https://doi.org/10.1175/1520-0469(1997)054642:damred2.0.00;2 .  

  36. Tong , M. and Xue , M . 2005 . Ensemble Kalman Filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments . Mon. Wea. Rev . 133 ( 7 ), 1789 – 1807 . https://doi.org/10.1175/MWR2898.1 .  

  37. Xiao , Q. , Kuo , Y.-H. , Sun , J. , Lee , W.-C. , Lim , E. and co-authors . 2005 . Assimilation of Doppler radar observations with a regional 3DVAR system: impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor 44 , 768 – 788 . https://doi.org/10.1175/JAM2248.1 .  

  38. Xiao , Q. , Kuo , Y.-H. , Sun , J. , Lee , W.-C. , Barker , D. M. and co-authors . 2007 . An approach of radar reflectivity data assimilation and its assessment with the inland QPF of typhoon Rusa (2002) at landfall. J. AppL Meteor ClimatoL 46 ( 1 ), 14 – 22 . https://doi.org/10.1175/JAM2439.1 .  

  39. Xue , M. , Tong , M. and Droegemeier , K. K . 2006 . An OSSE frame-work based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting . J. Atmos. Oceanic TechnoL 23 ( 1 ), 46 – 66 . https://doi.org/10.1175/JTECH1835.1 .  

  40. Yan , X. , Ducrocq , V. , Jaubert , G. , Brousseau , P. , Poli , P. and co-authors . 2009 . The benefit of GPS zenith delay assimilation to high-resolution quantitative precipitation forecasts: a case-study from COPS IOP 9. Quart. J. Roy. Meteor. Soc . https://doi.org/10.1002/qj.508 .  

  41. Zhao , Q. and Jin , Y . 2008 . High-resolution radar data assimilation for hurricane Isabel (2003) at landfall . Bull. Am. Meteor Soc . 89 ( 9 ), 1355 – 1372 . https://doi.org/10.1175/2008BAM52562.1 .  

comments powered by Disqus