Start Submission Become a Reviewer

Reading: The distribution of eddy kinetic and potential energies in the global ocean

Download

A- A+
Alt. Display

Original Research Papers

The distribution of eddy kinetic and potential energies in the global ocean

Authors:

Raffaele Ferrari,

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, US
X close

Carl Wunsch

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, US
X close

Abstract

Understanding of the major sources, sinks, and reservoirs of energy in the ocean is briefly updated in a diagram. The nature of the dominant kinetic energy reservoir, that of the balanced variablity, is then found to be indistinguishable in the observations from a sum of barotropic and first baroclinic ordinary quasi-geostrophic modes. Little supporting evidence is available to partition the spectra among forced motions and turbulent cascades, along with significant energy more consistent with weakly non-linear wave dynamics. Linear-response wind-forced motions appear to dominate the high frequency (but subinertial) mooring frequency spectra. Turbulent cascades appear to fill the high wavenumber spectra in altimetric data and numerical simulations. Progress on these issues is hindered by the difficulty in connecting the comparatively easily available frequency spectra with the variety of theoretically predicted wavenumber spectra.

How to Cite: Ferrari, R. and Wunsch, C., 2010. The distribution of eddy kinetic and potential energies in the global ocean. Tellus A: Dynamic Meteorology and Oceanography, 62(2), pp.92–108. DOI: http://doi.org/10.1111/j.1600-0870.2009.00432.x
47
Citations
  Published on 01 Jan 2010
 Accepted on 17 Dec 2009            Submitted on 21 Nov 2009

References

  1. Alford , M. H. and Whitmont , M . 2007 . Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records . J. Phys. Ocean . 37 , 2022 – 2037 .  

  2. Beyene , A. and Wilson , J. H . 2006 . Comparison of wave energy flux for northern, central, and southern coast of California based on long-term statistical wave data . Energy 31 , 1856 – 1869 .  

  3. Bishop , C. H. and Thorpe , A. J . 1994 . Potential voracity and the electrostatics analogy—quasi-geostrophic theory . Q. J. Roy. Met. Soc . 120 , 713 – 731 .  

  4. Bretherton , E B . 1966 . Critical layer instability in baroclinic flow . Q. J. Roy. Met. Soc . 92 , 325 – 344 .  

  5. Charney , J. G . 1971 . Geostrophic turbulence . J. Atmos. Sci . 28 , 1087 – 1095 .  

  6. Charney , J. G. and Flierl , G. A . 1981 . Evolution of physical oceanography. In: Scientific Surveys in Honor of Henry Stommel (eds B. A. Warren , and C. Wunsch ). The MIT Press, Cambridge, MA, 264-291 (available at http://ocw.mitedu/ans7870/resources/Wunsch/wunschtext.htm)  

  7. Chelton , D. B. , Schlax , M. G. , Samelson , R. M. and de Szoeke , R. A . 2007 . Global observations of large oceanic eddies. Geophys. Res. Lett . 34 , Art. 115606 , https://doi.org/10.1029/2007GL030812 .  

  8. Dewar , W. K. , Bingham , R. J. , Iverson , R. L. , Nowacek , D. P. , St Laurent , L. C. and Wiebe , P. H . 2006 . Does the marine biosphere mix the ocean? J. Mar Sci . 64 , 541 – 561 .  

  9. Dickey , J. O. , Bender , P. L. , Faller , J. E. , Newhall , X. X. , Ricklefs , R. L. and co-authors , 1994. Lunar laser ranging—a continuing legacy of the Apollo program. Science 265 , 482 – 490 .  

  10. Duhaut , T. H. A. and Straub , D. N . 2006 . Wind stress dependence on ocean surface velocity: implications for mechanical energy input to ocean circulation . J. Phys. Ocean . 36 , 202 – 211 .  

  11. Eady , E. T . 1949 . Long waves and cyclone waves . Tellus 1 , 33 – 52 .  

  12. Egbert , G. D. and Ray , R. D . 2000 . Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data . Nature 405 , 775 – 778 .  

  13. Egbert , G. D. and Ray , R. D . 2003 . Semi-diurnal and diurnal tidal dissipation from TOPEX-POSEIDON altimetery . Geophys. Res. Lett . 30 , GL017676 .  

  14. Ferrari , R. and Rudnick , D. L . 2000 . Thermohaline structure of the upper ocean . J. Geophys. Res . 105 , 16 857-16 883 .  

  15. Ferrari , R. and Wunsch , C . 2009 . Ocean circulation kinetic energy: reservoirs, sources, and sinks . Ann. Rev. Fluid Mech . 41 , 253 – 282 .  

  16. Flierl , G. R . 1978 . Models of vertical structure and calibration of 2-layer models , Dyn. Atm. Ocean . 2 , 341 – 381 .  

  17. Frankignoul , C. and Muller , P . 1979a . Quasi-geostrophic response of an infinite beta-plane ocean to stochastic forcing by the atmosphere . J. Phys. Ocean . 9 , 104 – 127 .  

  18. Frankignoul , C. and Muller , P . 1979b . Generation of geostrophic eddies by surface buoyancy flux anomalies . J. Phys. Ocean . 9 , 1207 – 1213 .  

  19. Fu , L.-L. and Cazenave , A . 2000 . Satellite Altimetty and Earth Sciences: A Handbook of Techniques and Applications . Academic Press , San Diego .  

  20. Fu , L.-L. and Flierl , G. R . 1980 . Non-linear energy and enstrophy transfers in a realistically stratified ocean . Dyn. Atms. Oceans 4 , 219 – 246 .  

  21. Furuichi , N. , Hibiya , T. and Niwa , Y . 2008 . Model-predicted distribution of wind-induced internal wave energy in the world’s oceans . J. Geophys. Res . 113 , C09034 , https://doi.org/10.1029/2008jc004768 .  

  22. Gill , A. E . 1982 . Atmosphere-Ocean Dynamics . Academic , NY . 662 pp .  

  23. Gouretslci , V. and Koltermann , P . 2004 . WOCE Global Hydrographic Climatology—A Technical Report. Berichte des Bundesamtes fiir Seeschifffahrt und Hydrographie. 52 pp. and two CD-ROMs.  

  24. Gregg , M. C. and Home , J. K . 2009 . Turbulence, acoustic bacicscatter, and pelagic nekton in Monterey Bay . J. Phys. Ocean . 39 , 1097 – 1114 .  

  25. Hasselmann , K . 1976 . Stochastic climate models. 1 . Theory. Tellus 28 , 473 – 485 .  

  26. Held , I. M. , Pierrehumbert , R. T. , Garner , S. T. and Swanson , K. L . 1995 . Surface quasi-geostrophic dynamics . J. Fluid Mech . 282 , 1 – 20 .  

  27. Hoskins , B. J. , McIntyre , M. E. and Robertson , A. W . 1985 . On the use and significance of isentropic potential voracity maps . Q. J. Roy. Met. Soc . 111 , 877 – 946 .  

  28. Huang , R.-X . 2004 . Energy Flows in the Ocean, in Encyclopedia of Energy , 497 – 509 , Elsevier, Cleveland .  

  29. Hughes , C. W. and Wilson , C . 2008 . Wind work on the geostrophic ocean circulation: an observational study of the effect of small scales in the wind stress . J. Geophys. Res . 113 , CO2016 , https://doi.org/10.1029/2007JCou4371 .  

  30. Jackson , D. D . 1975 . Classical Electrodynamics 2nd Edition. 848 pp. John Wiley , New York .  

  31. Katija , K. and Dabiri , J. O . 2009 . A viscosity-enhanced mechanism for biogenic ocean mixing . Nature 460 , 624 – 687 .  

  32. Katz , E. J . 1975 . Tow spectra from MODE . J. Geophys. Res . 80 , 1163 – 1167 .  

  33. Klein , P. , Isern-Fontanet , J. , Lapeyre , G. , Roullet , G. , Danioux , E. and co-authors . 2009 . Diagnosis of vertical velocities in the upper ocean from high resolution sea surface height. Geophys. Res. Letts . 36 , L12603 , https://doi.org/10.1029/2009GL038359 .  

  34. LaCasce , J. H. and Mahadevan , A . 2006 . Estimating subsurface horizontal and vertical velocities from sea-surface temperature . J. Mar Sci . 64 , 695 – 721 .  

  35. Lapeyre , G . 2009 . What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode . J. Phys. Ocean . 39 , 2857 – 2874 .  

  36. Lapeyre , G. and Klein , P . 2006 . Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory . J. Phys. Ocean . 36 , 165 – 176 .  

  37. Le Traon , P.Y. , Klein , P. , Hua , B.L. and Dibarboure G . 2008 . Do al-timeter wavenumber spectra agree with the interior or surface quasi-geostrophic theory? J. Phys. Ocean . 38 , 1137 – 1142 .  

  38. Lindzen , R. S . 1967 . Planetary waves on beta-planes . Mon. Wea. Rev . 95 , 441 – 451 .  

  39. Lindzen , R. S . 1994 . The Eady problem for a basic state with zero-PV gradient but fl-not-equal-0 . J. Atmos. Sci . 51 , 3221 – 3226 .  

  40. Luther , D. S . 1982 . Evidence of a 4-6 day barotropic, planetary oscillation of the Pacific Ocean . J. Phys. Ocean . 12 , 644 – 657 .  

  41. Luyten , J. , Spencer , A. , Tarbell , S. , Kuetkemeyer , K. , Flament , P. and co-authors . 1990 . Moored current metet; AVHRR, CTD, and drifter data from the Agulhas Current and Retrofleacion region (1985-1987), WHOI Tech. Rept. WHOI-79-85 , 77pp .  

  42. Marshall , D. P. and Naveira Garabato , A. C . 2008 . A conjecture on the role of bottom-enhanced diapycnal mixing in the parameterization of geostrophic eddies . J. Phys. Ocean . 38 , 1607 – 1613 .  

  43. Munk , W . 1981 . Internal waves and small-scale processes, in Evolution of Physical Oceanography. In: Scientific Surveys in Honor of Henry Stommel (eds B. A. Warren and C. Wunsch ). The MIT Press , Cambridge, Ma , 264 – 291 ( available at http://ocw.mitedu/ans7870/resources/VVunsch/wunschtext.htm )  

  44. Munk , W . 1997 . Once again: once again—tidal friction . Prog. Oceanogr 40 , 7 – 35 .  

  45. Oort , A. H. , Ascher , S. C. , Levitus , S. and Peixoto , J. P . 1989 . New estimates of the available potential-energy in the world ocean . J. Geophys. Res . 94 , 3187 – 3200 .  

  46. Philander , S. G. H . 1978 . Forced oceanic waves . Revs. Geophys . 16 , 15 – 46 .  

  47. Phillips , H. E. and Rintoul , S. R . 2000 . Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia . J. Phys. Ocean . 30 , 3050 – 3076 .  

  48. Ponte , R. M . 2009 . Rate of work done by atmospheric pressure on the ocean general circulation and tides . J. Phys. Ocean . 39 , 458 – 464 .  

  49. Rascle , N. , Ardhuin , F. , Queffeulou , P. and Croize-Fillon , D . 2008 . A global wave parameter database for geophysical applications. Part 1: wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations . Ocean Model . 25 , 154 – 171 .  

  50. Scott , R. B. and Wang , F. M . 2005 . Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry . J. Phys. Ocean . 35 , 1650 – 1666 .  

  51. Scott , R. B. and Xu , Y . 2008 . An update on the wind power input to the surface geostrophic flow of the world ocean . Deep-Sea Res.I 56 , 295 – 304 .  

  52. Sen , A. , Scott , R. B. and Arbic , B. K . 2008 . Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: computations from current-meter data . Geophys. Res. Lett . 35 , L09606 .  

  53. Smith , K. S. and Ferrari , R . 2009 . The production and dissipation of compensated thermohaline variance by mesoscale stirring . J. Phys. Ocean . 39 , 2477 – 2501 .  

  54. Smith , K. S. and Vallis , G. K . 2001 . The scales and equilibration of midocean eddies: freely evolving flow . J. Phys. Ocean . 31 , 554 – 571 .  

  55. Stammer , D . 1997 . Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements . J. Phys. Ocean . 27 , 1743 – 1769 .  

  56. Thorpe , S. A . 2005 . The Turbulent Ocean Cambridge Univ. Press , Cambridge , 439 pp .  

  57. Tulloch , R. and Smith , K. S . 2009 . A note on the numerical representation of surface dynamics in quasigeostrophic turbulence: application to the nonlinear Eady model . J. Atmos. Sci . 66 , 1063 – 1068 .  

  58. Vallis , G. K . 2006 . Atmospheric and Oceanic Fluid Dynamics Cambridge UK , Cambridge Univ. Press , 745 pp .  

  59. von Storch , J. S. Sasaki , H. and Marotzke , J . 2007 . Wind-generated power input to the deep ocean: an estimate using a 1/100 general circulation model . J. Phys. Ocean . 37 , 657 – 672 .  

  60. Wang , W. , Qian , C. C. and Huang , R. X . 2006 . Mechanical energy input to the wolrd oceans due to atmospheric loading . Chin. Sci. Bull . 51 , 327 – 330 .  

  61. Wang , W. and Huang , R. X . 2004 . Wind energy input to the Ekman layer . J. Phys. Ocean . 34 , 1267 – 1275 .  

  62. Watson , K. M . 1985 . Interaction between internal waves and mesoscale flow . J. Phys. Ocean . 15 , 1296 – 1311 .  

  63. Williams , P. D. , Haine , T. W. N. and Read , P. L . 2008 . Inertia-gravity waves emitted from balanced flow: observations, properties, and consequences . J. Atmos. Sci . 65 , 3543 – 3556 .  

  64. Willson , M. A. G . 1975 . Wavenumber-frequency analysis of large-scale tropospheric motions in extratropical northern hemisphere . J. Atmos. Sci . 32 , 478 – 488 .  

  65. Winters , K. B. and Young , W. R . 2009 . Available potential energy and buoyancy variance in horizontal convection . J. Fluid Mech . 629 , 221 – 230 .  

  66. Woodworth , P. L. , Windle , S. A. and Vassie , J. M . 1995 . Departures from the local inverse barometer model at periods of 5 days in the central South-Atlantic . J. Geophys. Res. 100 , 18 281-18 290 .  

  67. Wunsch , C . 1997 . The vertical partition of oceanic horizontal kinetic energy . J. Phys. Ocean . 27 , 1770 – 1794 .  

  68. Wunsch , C . 1998 . The work done by the wind on the oceanic general circulation . J. Phys. Ocean ., 28 , 2332 – 2340 .  

  69. Wunsch , C . 2009 . The oceanic variability spectrum and transport trends. Atmos.-Ocean (the C . Garrett Volume ), 47 , 281 – 291 .  

  70. Wunsch , C. and Ferrari , R . 2004 . Vertical mixing, energy and thegeneral circulation of the oceans . Ann. Rev. Fluid Mech . 36 , 281 – 314 .  

  71. Wunsch , C. and Gill , A. E . 1976 . Observations of equatorially trapped waves in Pacific sea-level variations . Deep-Sea Res ., 23 , 371 – 390 .  

  72. Wunsch , C. and Stammer , D . 1998 . Satellite altimetry, the marine geoid, and the oceanic general circulation . Ann. Rev. Fluid Mech . 26 , 219 – 253 .  

  73. Zang , X. Y. and Wunsch , C . 2001 . Spectral description of low-frequency oceanic variability . J. Phys. Ocean . 31 , 3073 – 3095 .  

comments powered by Disqus