Start Submission Become a Reviewer

Reading: The simulated sea ice thermal microwave emission at window and sounding frequencies

Download

A- A+
Alt. Display

Original Research Papers

The simulated sea ice thermal microwave emission at window and sounding frequencies

Author:

Rasmus T. Tonboe

Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, DK
X close

Abstract

Although the sea ice microwave emissivity is well defined in terms of brightness temperature and the effective temperature it is difficult to derive in practice and its link to physical processes in the snow and sea ice cover is not understood in detail. Future applications of assessing the sea ice microwave emission potentially include atmospheric sounding over sea ice for channels peaking near the surface. Here the microwave emission processes from sea ice are simulated using the combination of a one-dimensional thermodynamic snow and sea ice model and a microwave emission model. The emission model is a sea ice version of the Microwave Emission Model for Layered Snow-packs (MEMLS). It is demonstrated that the simulated seasonal variability of the emissivity, the spectral gradient and the polarization are comparable to satellite measurements. The spectral gradient ratio defined as the difference over the sum of the 18 and 36 GHz at vertical polarization is related to the emissivity at the atmospheric temperature sounding channels at around 50 GHz. Further the brightness temperature at neighbouring channels is highly correlated. However, the effective temperature at lower frequencies (18, 23, 36 and 50 GHz) is poorly correlated with the surface or air temperature.

How to Cite: Tonboe, R.T., 2010. The simulated sea ice thermal microwave emission at window and sounding frequencies. Tellus A: Dynamic Meteorology and Oceanography, 62(3), pp.333–344. DOI: http://doi.org/10.1111/j.1600-0870.2009.00434.x
  Published on 01 Jan 2010
 Accepted on 13 Jan 2010            Submitted on 1 Sep 2009

References

  1. Baunach , T. , Fierz , C. , Satyawali , P. K. and Schneebeli , M . 2001 . A model for kinetic grain growth . Ann. GlacioL 32 , 1 – 6 .  

  2. Brun , E. , Martin , E. , Simon , V. , Gendre , C. and Coleou , C . 1989 . An energy and mass model of snow cover suitable for operational avalanche forecasting . J. GlacioL 35 ( 121 ), 333 – 342 .  

  3. Brun , E. , David , P. , Sudul , M. and Brunot , G . 1992 . A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting . J. Glaciol . 38 ( 128 ), 13 – 22 .  

  4. Cavalieri , D. J . 1994 . A microwave technique for mapping thin ice . J. Geophys. Res . 99 ( C6 ), 12561 – 12572 .  

  5. Comiso , J. C. , Cavalieri , D. J. , Parkinson , C. L. and Gloersen , P . 1997 . Passive microwave algorithms for sea ice concentration: a comparison of two techniques . Remote Sens. Environ . 60 , 357 – 384 .  

  6. Derber , J. C. and Wu , W.-S . 1998 . The use of TOVS cloud cleared radiances in the NCEP SSI analysis System . Mon. Wea. Rev . 126 , 2287 – 2299 .  

  7. English , S. J . 1999 . Estimation of temperature and humidity profile information from microwave radiances over different surface types . J. AppL MeteoroL 38 , 1526 – 1527 .  

  8. Eppler , D. T. , Farmer , L. D. , Lohanick , A. W. , Anderson , M. R. , Cavalieri , D. J. and co-authors . 1992 . Passive microwave signatures of sea ice. In: Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68 (ed. F. D. Carsey ). American Geophysical Union , Washington, DC , 47 – 71 .  

  9. Haggerty , J. A. and Curry , J. A . 2001 . Variability of sea ice emissivity estimated from airborne passive microwave measurements during FIRE SHEBA . J. Geophys. Res . 106 ( D14 ), 15265 – 15277 .  

  10. Hallikainen , M. and Winebrenner , D. P . 1992 . The physical basis for sea ice remote sensing. In: Microwave Remote Sensing of Sea Ice, Geophysical Monograph 68 (ed. F. D. Carsey ). American Geophysical Union , Washington, DC , 29 – 46 .  

  11. Harlow , R. C . 2007 . Airborne retrievals of snow microwave emissivity at AMSU frequencies using ARTS/SCEM-UA . J. AppL MeteoroL ClimatoL 46 , 23 – 35 .  

  12. Hewison , T. J. and English , S. J . 1999 . Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths. IEEE Trans . Geosci. Remote Sens . 37 ( 4 ), 1871 – 1879 .  

  13. Heygster , G. , Melsheimer , C. , Mathew , N. , Toudal , L. , Saldo , R. , and co-authors . 2009 . POLAR PROGRAM: Integrated Observation and Modeling of the arctic Sea Ice and Atmosphere. Bull. Amer. Meteor Soc . 90 , 293 – 297 .  

  14. Hwang , B. J. , Ehn , J. K. , Barber , D. G. , Galley , R. and Grenfell , T. C . 2007 . Investigations of newly formed sea ice in the Cape Bathurst polynya: 2. Microwave emission . J. Geophys. Res . 112 , C05003 , https://doi.org/10.1029/2006JC003703 .  

  15. Jordan , R . 1991 . A one-dimensional temperature model for a snow cover . CRREL SP 91 – 16 .  

  16. Jordan , R. , Andreas , E. and Malcshtas , A . 1999 . Heat budget of snow covered sea ice at North Pole 4 . J. Geophys. Res . 104 ( C4 ), 7785 – 7806 .  

  17. Kunkee , D. B. , Poe , G. A. , Boucher , D. J. , Swadley , S. D. , Hong , Y. , and co-authors . 2008 . Design and evaluation of the first special sensor microwave imager/sounder. IEEE Trans. Geosci. Remote Sens . 46 ( 4 ), 863 – 883 .  

  18. Marbouty , D . 1980 . An experimental study of temperature gradient metamorphosism . J. GlacioL 26 ( 94 ), 303 – 312 .  

  19. Mätzler , C . 1998 . Improved Born approximation for scattering of radiation in a granular medium . J. AppL Phys . 83 ( 11 ), 6111 – 6117 .  

  20. Mätzler , C . 2002 . Relation between grain-size and correlation length of snow . J. GlacioL 48 ( 162 ), 461 – 466 .  

  21. Mätzler , C. and Wiesmann , A . 1999 . Extension of the Microwave Emission Model of Layered Snowpacics to coarse-grained snow . Remote Sens. Environ . 70 , 317 – 325 .  

  22. Mätzler , C. , Rosenkranz , P. W. , Battaglia , A. and Wigneron , J. P. eds. 2006 . Thermal Microwave Radiation-Applications for Remote Sensing . TEE Electromagnetic Waves Series, London , UK .  

  23. Maykut , G. A . 1986 . The surface heat and mass balance. In: The Geo-physics of Sea Ice (ed. N. Untersteiner ). NATO ASI Series, Plenum Press, New York and London, 395 – 464 .  

  24. Maykut , G. A. and Untersteiner , N . 1971 . Some results from a time-dependent thermodynamic model of sea ice . J. Geophys. Res . 76 , 1550 – 1575 .  

  25. Nakawo , M. and Sinha , N. K . 1981 . Growth rate and salinity profile of first-year sea ice in the high Arctic . J. GlacioL 27 ( 96 ), 315 – 330 .  

  26. Thyness , V. , Pedersen , L. T. , Schyberg , H. and Tveter , F . 2005 . Assimilating AMSUA over sea ice in HIRLAM 3D-Var, ITSC XIV Proceedings, Beijing, China 25-31 May 2005 .  

  27. Tonboe , R. T . 2005 . A mass and thermodynamic model for sea ice. Danish Meteorological Institute Scientific Report 05-10, Copenhagen.  

  28. Warren , S. G. , Rigor , I. G. , Untersteiner , N. , Radionov , V. F. , Bryazgin , N. N. , and co-authors . 1999. Snow depth on Arctic sea ice . J. Clim . 12 , 1814– 1829 .  

  29. Wiesmann , A. and Mätzler , C . 1999 . Microwave emission model of layered snowpacics . Remote Sens. Environ . 70 , 307 – 316 .  

  30. Wiesmann , A. , Fierz , C. and Mätzler , C . 2000 . Simulation of microwave emission from physically modelled snowpacks . Ann. GlacioL 31 , 397 – 404 .  

  31. Wiesmann , A. , Mätzler , C. and Weise , T . 1998 . Radiometric and structural measurements of snow samples . Radio Sci . 33 ( 2 ), 273 – 289 .  

comments powered by Disqus