Start Submission Become a Reviewer

Reading: On the upper tropospheric formation and occurrence of high and thin cirrus clouds during ant...

Download

A- A+
Alt. Display

Original Research Papers

On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events

Authors:

Ronald Eixmann,

Leibniz – Institut für Atmosphärenphysik an der Universität Rostock, Schlossstraße 6, D-18225 Ostseebad Kühlungsborn, Mecklenburg, DE
X close

Dieter H.W. Peters ,

Leibniz – Institut für Atmosphärenphysik an der Universität Rostock, Schlossstraße 6, D-18225 Ostseebad Kühlungsborn, Mecklenburg, DE
X close

Christoph Zülicke,

Leibniz – Institut für Atmosphärenphysik an der Universität Rostock, Schlossstraße 6, D-18225 Ostseebad Kühlungsborn, Mecklenburg, DE
X close

Michael Gerding,

Leibniz – Institut für Atmosphärenphysik an der Universität Rostock, Schlossstraße 6, D-18225 Ostseebad Kühlungsborn, Mecklenburg, DE
X close

Andreas Dörnbrack

Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, DE
X close

Abstract

Ground-based lidar measurements and balloon soundings were employed to examine the dynamical link between anticyclonic Rossby wave breaking and cirrus clouds from 13 to 15 February 2006. For this event, an air mass with low Ertel’s potential vorticity appeared over Central Europe. In the tropopause region, this air mass was accompanied with both an area of extreme cold temperatures placed northeastward, and an area of high specific humidity, located southwestward. ECMWF analyses reveal a strong adiabatic northeastward and upward transport of water vapour within the warm conveyor belt on the western side of the ridge over Mecklenburg, Northern Germany. The backscatter lidar at K¨uhlungsborn (54.1◦N, 11.8◦E) clearly identified cirrus clouds at between 9 and 11.4 km height. In the tropopause region high-vertical resolution radiosoundings showed layers of subsaturated water vapour over ice but with a relative humidity over ice >80%. Over Northern Germany radiosondes indicated anticyclonically rotating winds in agreement with backward trajectories of ECMWF analyses in the upper troposphere, which were accompanied by a relatively strong increase of the tropopause height on 14 February. Based on ECMWF data the strong link between the large-scale structure, updraft and ice water content was shown.

How to Cite: Eixmann, R., Peters, D.H.W., Zülicke, C., Gerding, M. and Dörnbrack, A., 2010. On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events. Tellus A: Dynamic Meteorology and Oceanography, 62(3), pp.228–242. DOI: http://doi.org/10.1111/j.1600-0870.2009.00437.x
  Published on 01 Jan 2010
 Accepted on 14 Jan 2010            Submitted on 15 Apr 2009

References

  1. Alpers , M. , Eixmann , R. , Höffner , J. , Köpnick , T. , Schneider , J. and co-authors . 1999 . The Rayleigh/Mie/Raman lidar at TAP Kahlungsborn. J. Aerosol Sci . 30 (Suppl. 1) , 637 – 638 .  

  2. Chen , T. , Rossow , W. B. and Zhang , Y . 2000 . Radiative effects of cloud type variations . J. Clim . 13 , 264 – 286 .  

  3. DeMott , P. J. , Cziczo , D. J. , Prenni , A. J. , Murphy , D. M. , Kreidenweis , S. M. and co-authors . 2003 . Measurements of the concentration and composition of nuclei for cirrus formation. P. Natl. Acad. Sci. U.S.A . 100 , 14655 – 14660 .  

  4. Ertel , H . 1942 . Ein neuer hydrodynamischer Wirbelsatz . MeteoroL Z . 59 , 277 – 281 .  

  5. Flohn , H. , Kapala , A. , Knoche , H. R. and Mächel , H . 1992 . Water vapor as an amplifier of the greenhouse effect: new aspects . MeteoroL Z., NF 1 , 122 – 138 .  

  6. Fusina , F. , Spichtinger , P. and Lohmann , U . 2007 . Impact of ice super-saturated regions and thin cirrus on radiation in the midlatitudes . J. Geophys. Res . 112 , D24514 , https://doi.org/10.1029/2007JD008449 .  

  7. Gabriel , A. and Peters , D . 2008 . A diagnostic study of Rossby wave breaking events in the northern hemisphere . J. Meteor Soc. Japan 86 ( 5 ), 613 – 631 .  

  8. Gierens , K. , Schumann , U. , Helten , M. , Smit , H. and Marenco , A . 1999 . A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measure-ments . Ann. Geophys . 17 , 1218 – 1226 .  

  9. Gierens , K . 2003 . On the transition between heterogeneous and homoge-neous freezing. Atmos. Chem. Phys . 3 , 437 – 446 , http://www.atmos-chem-phys.net/3/437/2003/ .  

  10. Immler , F. , Treffeisen , R. , Engelbart , D. , Kruger , K. and Schrems , O. 2008. Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes . Atmos. Chem. Phys . 8 , 1689– 1699 .  

  11. James , P. M. and Peters , D . 2002 . The Lagrangian structure of ozone mini-holes and potential voracity anomalies . Ann. Geophys . 20 , 835 – 846 .  

  12. Kaercher , B. and Lohmann , U . 2002 . A Parameterization of cirrus cloud formation: homogeneous freezing including effects of aerosol size . J. Geophys. Res . 107 , 4698 , https://doi.org/10.1029/2001JDO01429 .  

  13. Kaercher , B. and Strom , J . 2003 . The roles of dynamical variability and aerosols in cirrus cloud formation . Atmos. Chem. Phys . 3 , 823 – 838 .  

  14. Kaercher , B. , Hendricks , J. and Lohmann , U . 2006 . Physically-based pa-rameterization of cirrus cloud formation for use in global atmospheric models . J. Geophys. Res . 111 , D01205 , https://doi.org/10.1029/2005JD006219 .  

  15. Kaercher , B , Mohler , O. , DeMott , P. J. , Pechtl , S. and Yu , F . 2007 . Insights into the role of soot aerosols in cirrus cloud formation . Atmos. Chem. Phys . 4203 – 4227 .  

  16. Kirchner , I. and Peters , D . 2003 . Modelling the wintertime response to upper tropospheric and lower stratospheric ozone anomalies over the North Atlantic and Europe . Ann. Geophys . 21 , 2107 – 2118 .  

  17. Koch , G. , Wernli , H. , Schwierz , C. , Staehelin , J. and Peter , T . 2005 . A composite study on the structure and formation of ozone miniholes and minihighs over Central Europe . Geophys. Res. Lett . 32 , L12810 , https://doi.org/10.1029/2004GL022062 .  

  18. Koop , T . 2004 . Homogeneous ice nucleation in water and aqueous so-lutions (Review Article) . Z. Phys. Chem . 218 , 1231 – 1258 .  

  19. Koop , T. , Luo , B. , Tsias , A. and Peter , T . 2000 . Water activity as the determinant for homogeneous ice nucleation in aqueous solutions . Nature 406 , 611 – 614 .  

  20. Krämer , M. , Schiller , C. , Afchine , A. , Bauer , R. , Gensch , I. and co-authors . 2009 . Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys . 9 , 3505 – 3522 .  

  21. Lynch , D. K. , Sassen , D. , Starr , O. C. and Stephens , G . 2002 . Cirrus . Oxford University Press , New York , 480 pp .  

  22. Mace , G. G. , Benson , S. and Vernon , E . 2006 . On the relation-ship between cirrus cloud occurrence and microphysical properties with the large-scale atmospheric state revealed by 6 years of con-tinuous ground-based cloud radar data . J. Climate . 19 ( 13 ), 3257 – 3278 .  

  23. Murphy , D. M. and Koop , T . 2005 . Review of the vapor pressures of ice and supercooled water for atmospheric applications . Quart. J. Royal Met. Soc . 131 , 1539 – 1565 .  

  24. Nakamura , M. and Plumb , R. A . 1994 . The effects of flow asymmetry on the direction of Rossby wave breaking . J. Atmos. Sci . 51 , 2031 – 2045 .  

  25. Peter , T. , Marcolli , C. , Spichtinger , P. , Corti , T. , Baker , M. B. and co-authors . 2006. When dry air is too humid . Science 314 ( 5804 ), 1399-1402 .  

  26. Peters , D. and Waugh , D. W . 1996 . Influence of barotropic shear on the poleward advection of upper-tropospheric air . J. Atmos. Sci . 53 , 3013 – 3031 .  

  27. Randel , W. J. and Stanford , J. L . 1985 . The observed life cycle of a baro-clinic instability . J. Atmos. Sci . 42 ( 13 ), 1364 – 1373 , https://doi.org/10.1175/1520-0469 .  

  28. Sassen , K. and Campbell , J. R . 2001 . A midlatitude cirrus cloud cli-matology from the facility for atmospheric remote sensing. Part I: macrophysical and synoptic properties . J. Atmos. Sci . 58 , 481 – 496 .  

  29. Simmons , A. J. and Hoskins , B. J . 1978 . The life cycles of some nonlinear baroclinic waves . J. Atmos. Sci . 35 , 414 – 432 .  

  30. Simmons , A. J. and Hoskins , B. J . 1980 . Barotropic influences on the growth and decay of nonlinear baroclinic waves . J. Atmos. Sci . 37 , 1679 – 1684 .  

  31. Sonntag , D . 1990 . Important new values of the physical constants of 1986, vapour pressure formulations based on ITS-90, and psychrom-eter formulae . Z. f Meteorologie . 40 ( 5 ), 340 – 344 .  

  32. Spichtinger , P. , Gierens , K. , Leiterer , U. and Dier , H . 2003 . Ice supersat-uration in the tropopause region over Lindenberg, Germany . MeteoroL Z . 12 , 143 – 156 .  

  33. Spichtinger , P. , Gierens , K. and Wernli , H . 2005a. A case study on the formation and evolution of ice supersaturation in the vicinity of a warm conveyor belt’s outflow region. Atmos. Chem. Phys . 5 , 973 – 987 , SRef-ID: 1680-7324/acp/2005-5-973 .  

  34. Spichtinger , P. , Gierens , K. and Dörnbrack , A . 2005b. Formation of ice supersaturation by mesoscale gravity waves. Atmos. Chem. Phys . 5 , 1243 – 1255 , SRef-ID: 1680-7324/acp/2005-5-973.  

  35. Spichtinger , P. and Gierens , K. M . 2009a . Modelling of cirrus clouds. Part la: model description and validation . Atmos. Chem. Phys . 9 , 685 – 706 .  

  36. Spichtinger , P. and Gierens , K. M . 2009b . Modelling of cirrus clouds. Part lb: structuring cirrus clouds by dynamics . Atmos. Chem. Phys . 9 , 707 – 719 .  

  37. Spichtinger , P. and Gierens , K. M . 2009c . Modelling of cirrus clouds. Part 2: competition of different nucleation mechanisms . Atmos. Chem. Phys . 9 , 2319 – 2334 .  

  38. Thorncroft , C. D. , Hoskins , B. J. and McIntyre , M. E . 1993 . Two paradigms of baroclinic-wave life-cycle behavior . Quart. J. R. Met. Soc . 119 , 17 – 55 .  

  39. Tompkins , A. M. , Gierens , K. and Rädel , G . 2007 . Ice supersaturation in the ECMWF integrated forecast system . Quart. J. R. Met. Soc . 133 , 53 – 63 .  

  40. Vali , G . 1985 . Atmospheric ice nucleation—a review . J. Rech. Atmos . 19 , 105 – 115 .  

  41. Vömel H. , David , D. E. and Smith , K . 2007 . Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: instrumental details and observations . J. Geophys. Res . 112 , D08305 , https://doi.org/10.1029/2006JD007224 .  

  42. Wernli , H. and Davies , H. C . 1997 . A Lagrangian-based analysis of extratropical cyclones, I: the method and some applications . Q. J. Roy. MeteoroL Soc . 123 , 467 – 489 .  

  43. WMO . 2006 . Guide to Meteorological instruments and methods of ob-servation, preliminary seventh edition, WMO-Nr. 8 .  

  44. Zhang , Y. , Macke , A. and Albers , F . 1999 . Effect of crys-tal size spectrum and crystal shape on stratiform cir-rus radiative forcing . Atmos. Res . 52 , 59 – 75 , https://doi.org/10.1016/S0169-8095(99)00026-5 .  

  45. Zülicke , Ch. and Peters , D . 2007 . Parameterization of strong stratospheric inertia-gravity waves forced by poleward breaking Rossby waves . Mon. Wea. Rev . 136 ( 1 ), 98 – 119 , https://doi.org/10.1175/2007MWR2060.1 .  

comments powered by Disqus