Start Submission Become a Reviewer

Reading: Structural variation in genesis and landfall locations of North Atlantic tropical cyclones r...

Download

A- A+
Alt. Display

Original Research Papers

Structural variation in genesis and landfall locations of North Atlantic tropical cyclones related to SST

Authors:

Jonas Rumpf ,

Ulm University, Institute of Stochastics, 89069 Ulm, DE
X close

Helga Weindl,

Munich Reinsurance Company, 80791 Munich, DE
X close

Eberhard Faust,

Munich Reinsurance Company, 80791 Munich, DE
X close

Volker Schmidt

Ulm University, Institute of Stochastics, 89069 Ulm, DE
X close

Abstract

The influence of sea surface temperature (SST) on the locations of the genesis and of landfall of tropical cyclones in the North Atlantic is analyzed. For that purpose, these locations are calculated from HURDAT and split into two disjoint subsets according to whether SST in the North Atlantic was above or below average in the year the corresponding storms occurred. Landfalls are investigated separately for the groups of cyclones categorized as tropical storms, minor hurricanes, or major hurricanes at the moment of landfall. The locations are considered realizations of inhomogeneous Poisson point processes, and the corresponding density functions are estimated with kernel estimation methods. In this way, any spatial structure inherent in the data is taken into account. These density functions are then compared with Monte Carlo methods from spatial statistics, which allows the detection of areas of statistically significant differences in the two sets with high and low SST, respectively. Results show many such areas, which is of relevance for the insurance industry and mathematical modelling of cyclones, as well as for decision support during the preparation for natural disasters.

How to Cite: Rumpf, J., Weindl, H., Faust, E. and Schmidt, V., 2010. Structural variation in genesis and landfall locations of North Atlantic tropical cyclones related to SST. Tellus A: Dynamic Meteorology and Oceanography, 62(3), pp.243–255. DOI: http://doi.org/10.1111/j.1600-0870.2009.00438.x
  Published on 01 Jan 2010
 Accepted on 15 Jan 2010            Submitted on 13 Mar 2009

References

  1. Cacoullous , T . 1966 . Estimation of a multivariate density . Ann. I. StaL Math . 18 ( 2 ), 179 – 189 .  

  2. Camargo , S. J. , Emanuel , K. A. and Sobel , A. H . 2007 . Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis . J. Climate 20 , 4819 – 4834 .  

  3. Chan , J. , Duan , Y. and Shay , L . 2001 . Tropical cyclone intensity change from a simple ocean-atmosphere coupled model . J. Atmos. Sci . 58 ( 2 ), 154 – 172 .  

  4. Dailey , P. S. , Zuba , A. , Ljung , G. , Dima , I. M. and Guin , J . 2009 . On the relationship between North Atlantic sea surface temperatures and U.S. hurricane landfall risk . J. AppL MeteoroL Clim . 48 ( 1 ), 111 – 129 .  

  5. Diggle , P. J . 2003 . Statistical Analysis of Spatial Point Patterns , 2nd Edition , Arnold , London .  

  6. Emanuel , K. A. and Nolan , D. S . 2004 . Tropical cyclone activity and global climate. Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL , 240 – 241 .  

  7. Emanuel , K. , Ravela , S. , Vivant , E. and Risi , C . 2006 . A statistical deterministic approach to hurricane risk assessment . B. Am. MeteoroL Soc . 87 , 299 – 314 .  

  8. Epanechnilcov , V. A . 1969 . Non-parametric estimation of a multivariate probability density . Theor. Probab. Appl 14 ( 1 ), 153 – 158 .  

  9. Goldenberg , S. B. , Landsea , C. W. , Mestas-Nuñez , A. M. and Gray , W. M . 2001 . The recent increase in Atlantic hurricane activity: causes and implications . Science 293 , 474 – 479 .  

  10. Gray , W. M . 1979 . Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology Over Tropical Oceans (ed. D. B. Shaw ), Roy. Meteor. Soc., Berkshire , 155 – 218 .  

  11. Hall , T. M. and Jewson , S . 2007 . Statistical modeling of North Atlantic tropical cyclone tracks . Tellus 59A , 486 – 498 .  

  12. Hall , T. M. and Jewson , S . 2008 . Comparison of local and basinwide methods for risk assessment of tropical cyclone landfall . J. AppL Meteorol. Clim . 47 , 361 – 367 .  

  13. Holland , G. J. and Webster , P. J . 2007 . Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Philos. Trans. R . Soc. London, Ser A 365 ( 1860 ), 2695 – 2716 .  

  14. Illian , J. , Penttinen , A. , Stoyan , H. and Stoyan , D . 2008 . Statistical Analysis and Modelling of Spatial Point Patterns, J. Wiley & Sons , Chichester .  

  15. Jarvinen , B. R. , Neumann , C. J. and Davis , M. A. S . 1984 . A tropical cyclone data tape for the North Atlantic basin, 1886-1983, contents, limitations and uses. NOAA Tech. Memo . NVVS NHC 22, Miami, FL.  

  16. Kelsall , J. E. and Diggle , P. J . 1995 . Non-parametric estimation of spatial variation in relative risk . Stat. Med . 14 , 2335 – 2342 .  

  17. Knight , J. R. , Allan , R. J. , Folland , C. K. , Vellinga , M. and Mann , M. E . 2005 . A signature of persistent natural thermohaline circulation cycles in observed climate . Geophys. Res. Lett . 32 , L20708 .  

  18. Kossin , J. P. and Vimont , D. J . 2007 . A more general framework for understanding atlantic hurricane variability and trends . B. Am. MeteoroL Soc . 88 ( 11 ), 1767 – 1781 .  

  19. Latif , M. , Keenlyside , N. and Bader , J . 2007 . Tropical sea surface temperature, vertical wind shear, and hurricane development . Geophys. Res. Lett . 34 , L01710 .  

  20. Mann , M. E. and Emanuel , K. A . 2006 . Atlantic hurricane trends linked to climate change . EOS, Trans., Am. Geophys. Un . 87 , 233 – 244 .  

  21. Møller , J. and Waagepetersen , R. P . 2003 . Statistical Inference and Simulation for Spatial Point Processes , Chapman & Hall, New York.  

  22. Rayner , N. A. , Parker , D. E. , Horton , E. B. , Folland , C. K. , Alexander , L. V. and co-authors . 2003 . Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res . 108 ( D14 ) 4407 .  

  23. Rumpf , J. , Weindl , H. , Hoppe , P. , Rauch , E. and Schmidt , V . 2007 . Stochastic modelling of tropical cyclone tracks . Math. Meth. Oper Res . 66 ( 3 ), 475 – 490 .  

  24. Rumpf , J. , Weindl , H. , Hoppe , R , Rauch , E. and Schmidt , V . 2009 . Tropical cyclone hazard assessment using model-based track simulation . Nat. Hazards 48 ( 3 ), 383 – 398 .  

  25. Saunders , M. A. and Lea , A. S . 2008 . Large contribution of sea surface warming to recent increase in Atlantic hurricane activity . Nature 451 ( 7178 ), 557 – 560 .  

  26. Scott , D. W . 1992 . Multivariate Density Estimation: Theory, Practice, and Visualization , Wiley , New York .  

  27. Silverman , B. W . 1986 . Density Estimation for Statistics and Data Analysis , Chapman & Hall, London.  

  28. Swanson , K. L . 2008 . Nonlocality of Atlantic tropical cyclone intensities . Geochem. Geophys. Geosyst . 9 , Q04V01 .  

  29. Vellinga , M. and Wu , P . 2004 . Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation . J. Clim . 17 , 4498 – 4511 .  

  30. Wand , M. P. and Jones , M. C . 1995 . Kernel Smoothing , Chapman & Hall, London.  

  31. Wang , C. , Lee , S.-K. and Enfield , D. B . 2008 . Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity . Geochem. Geophys. Geosyst . 9 , Q05V03 .  

  32. Zhang , R. and Delworth , T. L . 2006 . Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes . Geophys. Res. Lett . 33 , L17712 .  

comments powered by Disqus