Start Submission Become a Reviewer

Reading: Mixed Gaussian-lognormal four-dimensional data assimilation

Download

A- A+
Alt. Display

Original Research Papers

Mixed Gaussian-lognormal four-dimensional data assimilation

Author:

S. J. Fletcher

Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375, US
X close

Abstract

In this paper, the current methods that are used for deriving the Gaussian cost function in four-dimensional variational (4D VAR) data assimilation, are extended to lognormal and mixed, lognormal and Gaussian, random variables (rv). It is also shown that transforming a lognormal rv into a Gaussian rv to use in a Gaussian based 4D VAR results in the analysis state being similar to a median in lognormal space. An alternative version of the functional approach is derived so that the minimum of this alternative cost function is the mode in lognormal space. However, the current approaches do not allow for a generalized probability density function (pdf) approach, to overcome this a general probability model is derived so that the mode is found for any pdf from Bayesian networks and conditional independence properties. It is shown that the current Gaussian cost function and the lognormal can be found by the probability model method. The paper is finished by comparing the median approach with the modal approach in the Lorenz 1963 model for both weak and strong constraint 4D VAR and show that the mode is a more reliable analysis statistic than the median under certain circumstances.

How to Cite: Fletcher, S.J., 2010. Mixed Gaussian-lognormal four-dimensional data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 62(3), pp.266–287. DOI: http://doi.org/10.1111/j.1600-0870.2009.00439.x
  Published on 01 Jan 2010
 Accepted on 15 Feb 2010            Submitted on 8 Jul 2009

References

  1. Beaulieu , N. C. and Rajwani , N . 2004 . Highly accurate simple closed form approximations to lognormal sum distributions and densities . IEEE Comm. Lett . 9 , 709 – 711 .  

  2. Clarke , G. M. and Cooke , D . 2004 . A Basic Course in Statistics . Oxford University Press , New York, USA , 734 pp .  

  3. Cohn , S. E . 1997 . An introduction to estimation theory J. Meteor Soc .  

  4. Courtier , P. and Talagrand , O . 1990 . Variational assimilation of meteorological observations with the direct and adjoint shallow-water As with the Gaussian and lognormal constant bias case weequations . Tellus 42A , 531 – 549 .  

  5. Daley , R . 1992 . The effects of serially correlated observation and model errors on atmospheric data assimilation . Mon. Wea. Rev . 164 , 120 – 177 .  

  6. Fletcher , S. J. and Zupanski , M 2006a . A data assimilation method for log-normally distributed observational errors . Quart. J. Roy. Meteor Soc . 132 , 2505 – 2519 .  

  7. Fletcher , S. J. and Zupanski , M 2006b . A hybrid normal and lognormal distribution for data assimilation . Atmos. Sci. Lett . 7 , 43 – 46 .  

  8. Fletcher , S. J. and Zupanski , M 2007 . Implications and impacts of trans-forming lognormal variables into normal variables in VAR . Meteorol-ogische Zeitschrift 16 , 755 – 765 .  

  9. Le Dimet , E-X. and Talagrand , O . 1986 . Variational algorithm for anal-ysis and assimilation adjustment problem with advective constraints . Tellus 38A , 97 – 110 .  

  10. Lewis , J. M. and Derber , J. C . 1985 . The use of adjoints equations to solve a variational adjustment problem with advective constraints . Tellus 37A , 309 – 322 .  

  11. Lorene , A. C . 1986 . Analysis methods for numerical weather prediction . Q. J. Roy. Meteor. Soc 112 , 1177 – 1194 .  

  12. Lorenz , E. N . 1963 . Deterministic nonperiodic flow . J. Atmos. Sci . 20 , 130 – 141 .  

  13. Mielke , P. W. , Williams , J. S. and Wu , S.-C . 1977 . Covariance analysis techniques based upon bivariate lognormal distribution with modifi-cation application . J. Appl. Met . 16 , 183 – 187 .  

  14. Miles , M. L. , Verlinde , J. and Clothiaux , E. E . 2000 . Cloud droplet size distribution in low-level stratiform clouds . J. Atmos. Sci . 57 , 295 – 311 .  

  15. Pearl , J . 2007 . Causality, Models, Reasoning and Inference Cambridge University Press. , New York, USA. , 384 pp .  

  16. Pedlosky , J . 1987 . Geophysical Fluid Dynamics Springer , New York, USA. , 710 pp .  

  17. Polavarapu , S. , Ren , S. , Rochen , Y. , Sankey , D. , Ek , N. and co-authors . 2005 . Data assimilation with the Canadian middle atmosphere model. Atmos.-Ocean 43 ( 1 ), 77 – 100 .  

  18. Sasaki , Y . 1970 Some basic formalisms in numerical variational analysis . Mon. Wea. Rev ., 98 , 875 – 883 .  

  19. Sengupta , M. , Clothiaux , E. E. and Ackerman , T. P . 2002 Climatology of warm boundary layers clouds at the ARM SGP site and their comparisons to models . J. Clim ., 17 , 4760 – 4782 .  

  20. Talagrand , O . 1988 Four-dimensional variational data assimilation. ECMWF Seminar Proceedings on Data Assimilation and the use of Satellite Data., ECMWF, Reading, U.K. 1 – 30 .  

  21. Thépaut , J.-N. and Courtier , P ., 1991 . Four-dimensional variational data assimilation using the adjoint of a multilevel primitive equation model . Quart. J. Roy. Meteor. Soc ., 117 , 1225 – 1254 .  

  22. Thépaut , J.-N. , Hoffman , R. N. and Courtier , P ., 1993 . Interactions of dy-namics and observations in four-dimensional variational assimilation . Mon Wea. Rev ., 121 , 3393 – 3414 .  

  23. Van Leeuwen , P. J. and Evensen , G . 1996 . Data assimilation and inverse methods in terms of a probabilistic formulation . Mon. Wea. Rev ., 124 , 2898 – 2913 .  

  24. Zupanlcsi , D . 1997 . A general weak constraint applicable to opera-tional 4DVAR data assimilation systems . Mon. Wea. Rev , 125 , 2274 – 2292 .  

comments powered by Disqus