Beaulieu , N. C. and Rajwani , N . 2004 . Highly accurate simple closed form approximations to lognormal sum distributions and densities . IEEE Comm. Lett . 9 , 709 – 711 .
Clarke , G. M. and Cooke , D . 2004 . A Basic Course in Statistics . Oxford University Press , New York, USA , 734 pp .
Cohn , S. E . 1997 . An introduction to estimation theory J. Meteor Soc .
Courtier , P. and Talagrand , O . 1990 . Variational assimilation of meteorological observations with the direct and adjoint shallow-water As with the Gaussian and lognormal constant bias case weequations . Tellus 42A , 531 – 549 .
Daley , R . 1992 . The effects of serially correlated observation and model errors on atmospheric data assimilation . Mon. Wea. Rev . 164 , 120 – 177 .
Fletcher , S. J. and Zupanski , M 2006a . A data assimilation method for log-normally distributed observational errors . Quart. J. Roy. Meteor Soc . 132 , 2505 – 2519 .
Fletcher , S. J. and Zupanski , M 2006b . A hybrid normal and lognormal distribution for data assimilation . Atmos. Sci. Lett . 7 , 43 – 46 .
Fletcher , S. J. and Zupanski , M 2007 . Implications and impacts of trans-forming lognormal variables into normal variables in VAR . Meteorol-ogische Zeitschrift 16 , 755 – 765 .
Le Dimet , E-X. and Talagrand , O . 1986 . Variational algorithm for anal-ysis and assimilation adjustment problem with advective constraints . Tellus 38A , 97 – 110 .
Lewis , J. M. and Derber , J. C . 1985 . The use of adjoints equations to solve a variational adjustment problem with advective constraints . Tellus 37A , 309 – 322 .
Lorene , A. C . 1986 . Analysis methods for numerical weather prediction . Q. J. Roy. Meteor. Soc 112 , 1177 – 1194 .
Lorenz , E. N . 1963 . Deterministic nonperiodic flow . J. Atmos. Sci . 20 , 130 – 141 .
Mielke , P. W. , Williams , J. S. and Wu , S.-C . 1977 . Covariance analysis techniques based upon bivariate lognormal distribution with modifi-cation application . J. Appl. Met . 16 , 183 – 187 .
Miles , M. L. , Verlinde , J. and Clothiaux , E. E . 2000 . Cloud droplet size distribution in low-level stratiform clouds . J. Atmos. Sci . 57 , 295 – 311 .
Pearl , J . 2007 . Causality, Models, Reasoning and Inference Cambridge University Press. , New York, USA. , 384 pp .
Pedlosky , J . 1987 . Geophysical Fluid Dynamics Springer , New York, USA. , 710 pp .
Polavarapu , S. , Ren , S. , Rochen , Y. , Sankey , D. , Ek , N. and co-authors . 2005 . Data assimilation with the Canadian middle atmosphere model. Atmos.-Ocean 43 ( 1 ), 77 – 100 .
Sasaki , Y . 1970 Some basic formalisms in numerical variational analysis . Mon. Wea. Rev ., 98 , 875 – 883 .
Sengupta , M. , Clothiaux , E. E. and Ackerman , T. P . 2002 Climatology of warm boundary layers clouds at the ARM SGP site and their comparisons to models . J. Clim ., 17 , 4760 – 4782 .
Talagrand , O . 1988 Four-dimensional variational data assimilation. ECMWF Seminar Proceedings on Data Assimilation and the use of Satellite Data., ECMWF, Reading, U.K. 1 – 30 .
Thépaut , J.-N. and Courtier , P ., 1991 . Four-dimensional variational data assimilation using the adjoint of a multilevel primitive equation model . Quart. J. Roy. Meteor. Soc ., 117 , 1225 – 1254 .
Thépaut , J.-N. , Hoffman , R. N. and Courtier , P ., 1993 . Interactions of dy-namics and observations in four-dimensional variational assimilation . Mon Wea. Rev ., 121 , 3393 – 3414 .
Van Leeuwen , P. J. and Evensen , G . 1996 . Data assimilation and inverse methods in terms of a probabilistic formulation . Mon. Wea. Rev ., 124 , 2898 – 2913 .
Zupanlcsi , D . 1997 . A general weak constraint applicable to opera-tional 4DVAR data assimilation systems . Mon. Wea. Rev , 125 , 2274 – 2292 .