Start Submission Become a Reviewer

Reading: Characteristics and impact of a gale-force storm field over the Norwegian Sea

Download

A- A+
Alt. Display

Original Research Papers

Characteristics and impact of a gale-force storm field over the Norwegian Sea

Authors:

Burghard Brümmer,

Meteorological Institute, University of Hamburg, DE
X close

Gerd Müller ,

Meteorological Institute, University of Hamburg, DE
X close

Christian Klepp,

Meteorological Institute, University of Hamburg, DE
X close

Gunnar Spreen,

Institute for Oceanography, University of Hamburg, DE
X close

Roland Romeiser,

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, US
X close

Jochen Horstmann

Institute for Coastal Research, GKSS Research Center, Geesthacht, DE
X close

Abstract

A unique data set was sampled by aircraft, ship, drift buoys and satellites in a strong storm event which occurred over the Norwegian Sea in March 2005 during the LOFZY field experiment. The atmospheric characteristics and the impact on the upper ocean are investigated. The storm field with winds up to 27 m s−1 was situated on the west-side of a low-pressure trough along the Norwegian coast and was marked by a sharp wind front. The entire system of trough, front and storm field was about 200 km wide, had a lifetime of 2 d in the area and advanced at 1–3 m s−1 SE-wards. Temperature contrast across the system was small, but wind contrast was remarkable and concentrated in a step-like front with 5–15 m s−1 difference over a distance of 3 km. The entire system was restricted to the lowest 2 km. It was accompanied by wide-spread rain and snow. Precipitation slightly surpassed evaporation (0.22 mm h−1). Surface heat fluxes amounted up to 400 W m−2. However, they cannot account for the observed sea surface temperature changes between −0.8 and +0.1 K within 6 h during the frontal passage. This is attributed to vertical mixing in the ocean caused by the frontal wind impact and superimposed to pre-existing mesoscale eddy circulations. The mixing acted on a temperature stratification in the uppermost 20–100 m which was opposite on both sides of the Norwegian Current.

How to Cite: Brümmer, B., Müller, G., Klepp, C., Spreen, G., Romeiser, R. and Horstmann, J., 2010. Characteristics and impact of a gale-force storm field over the Norwegian Sea. Tellus A: Dynamic Meteorology and Oceanography, 62(4), pp.481–496. DOI: http://doi.org/10.1111/j.1600-0870.2009.00448.x
  Published on 01 Jan 2010
 Accepted on 12 Mar 2010            Submitted on 27 Jul 2009

References

  1. Affeld , B . 2003 . Zyklonen in der Arktis und ihre Bedeutung für den Eistransport durch die Framstrafie. PhD Thesis, Univ. of Hamburg, Germany 130 pp .  

  2. Andersson , A . 2009 . The HOAPS climatology: evaluation and applications. PhD Thesis, Univ. of Hamburg, Germany 177 pp .  

  3. Brümmer , B. , Thiemann , S. and Kirchgdf3ner , A. 2000 . A cyclone statistics for the Arctic based on European Centre re-analysis data . Meteorol. Atmos. Phys . , 75 , 233 – 250 .  

  4. Cavalieri , D. and Häldcinen , S . 2001 . Arctic climate and atmospheric planetary waves . Geophys. Res. Lett . , 28 , 791 – 794 .  

  5. Drennan , W.M. , Zhang , J.A. , French , J.R. , McCormick , C. and Black , P.G . 2007 . Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sc i . 64 , 1103 – 1115 .  

  6. Fairall , C.W. , Bradley , E.F. , Hare , J.E. , Grachev , A.A. and Edson , J.B . 2003 . Bulk parameterization of air-sea fluxes: Updates and verification of the COARE algorithm . J. Climate 16 ( 4 ), 571 – 591 .  

  7. French , J.R. , Drennan , W.M. , Zhang , J.A. and Black , P.G . 2007 : Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sc i . 64 , 1089 – 1102 .  

  8. Horstmann , J. and Koch , W . 2005 . Measurements of ocean surface winds using synthetic aperture radars . IEEE J. Ocean. Eng . 30 , 508 – 515 .  

  9. Jahnke-Bornemann , A . 2009 . Zyklonen im Europäischen Nordmeer. Variabilität und Zusammenheinge mit der großräumigen atmosphärischen Zirkulation . PhD Thesis, Univ. of Hamburg, Germany, 115 pp .  

  10. Jahnke-Bornemann , A. and Brümmer , B. 2009. The Iceland — Lofotes pressure difference: different states of the North Atlantic low pressure zone. Tellus 61A , 466 – 475 .  

  11. Klepp , C. , Bumke , K. and Balcan , S . 2010 . Ground validation of oceanic snowfall in satellite climatologies during LOFZY. Tellus 62A, this issue.  

  12. Lammert , A. , Brümmer , B. , Ebbers , I. and Muller , G . 2008 . Validation of ECMWF and DWD model analyses with buoy measurements over the Norwegian Sea . Meteorol. Atmos Phys . 102 , 87 – 96 .  

  13. Moore , G.W.K. , Pickart , R.S. and Renfrew , I.A . 2008 . Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland . Geophys. Res. Lett . 35 , L18802 , https://doi.org/10.1029/2008GL034845 .  

  14. Pazan , S .E and Niiler, P.P. 2001. Recovery of near-surface velocity from undrogued drifters. J. Atmos. Oceanic Tech . 18 ( 3 ), 476 – 489 .  

  15. Petersen , G.N. and Renfrew , I.A . 2009 . Aircraft-based observation of air-sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions . Q.J.R. Meteor Soc . 135 , 2030 – 2045 .  

  16. Persson , P.O.G. , Hare , J.E. Fairall , C.W. and Otto , W.D . 2005 . Air-sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX . Q.J.R. Meteor Soc . 131 , 877 – 912 .  

  17. Pickart , R.S. , Spall , M.A. , Hvid Ribergaard , M. , Moore , G.W.K. and Milliff , R.F . 2003 . Deep convection in the Irminger Sea forced by the Greenland tip jet . Nature 424 , 152 – 156 .  

  18. Poulain , P.M. , Warn-Varnas , A. and Niiler , P.P . 1996 . Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters . J. Geophys. Res . 101 ( C8 ), 18237 – 18258 .  

  19. Renfrew , LA. , Petersen , G.N. , Sproson , D.A.J. , Moore , G.W.K. , Adiwidjaja , H. and co-authors. 2009. A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuilcSCAT winds. Q. J. R. Meteor Soc . 135 , 2046 – 2066 .  

  20. Ren , X. , Perrie , W. , Long , Z. and Gyakum , J . 2004 . Atmosphere-ocean coupled dynamics of cyclones in midlatitudes. Mon . Wea. Re v . 132 , 2432 – 2451 .  

  21. Rogers , J.C . 1997 . North Atlantic storm track variability and its association to the North Atlantic oscillation and climate variability of Northern Europe . J. Climate 10 , 1635 – 1647 .  

  22. Saetra , O. , Linders , T. , Debernard , J.B . 2008 . Can polar lows lead to a warming of the ocean surface? Tellus 60A , 141 – 153 .  

  23. Schade L.R. and Emanuel , K.A . 1999 . The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sc i . 56 , 642 – 651 .  

  24. Skeie , P . 2000 . Meridional flow variability over the Nordic Seas in the Arctic oscillation framework . Geophys. Res. Lett . 27 , 2569 – 2572 .  

  25. Sorteberg , A ., wamto , N.G. K. and Byrkjedal , D. 2005. Wintertime Nordic Seas cyclone variability and its impact on oceanic volume transports into the Nordic Seas. In: The Nordic Seas (eds Drange and co-editors), AGU Monograph , 137 – 157 .  

  26. Tsukernilc , M. , Kindig , D. and Serreze , M . 2007 . Characteristics of winter cyclone activity in the Northern North Atlantic: Insights from observations and regional modeling . J. Geophys. Res . 112 , D03101 , https://doi.org/10.1029/2006jd007184 .  

  27. Young , G.S. , Sikora , T.D. and Winstead , N.S . 2005 . Use of synthetic aperture radar in finescale surface analysis of synoptic-scale fronts at sea . Wea. Forecast . 20 , 311 – 327 .  

  28. Zhang , X. , Walsh , J. , Zhang , J. , Bhatt , U. and Ikeda , M . 2004 . Climatology and interannual variability of Arctic Cyclone activity: 1948-2002 . J. Climate 17 , 2300 – 2317 .  

  29. Zedler , SE. , Dickey , T.D. , Doney , S.C. , Price , J.F. , Yu , X. and co-authors . 2002 : Analyses and simulations of the upper ocean’s response to hurricane Felix at the Bermuda Testbed Mooring site: 13-23 August 1995. J. Geophys. Res . 107 ( C12 ), 3232 , https://doi.org/10.1029/2001JC000969 .  

comments powered by Disqus