Start Submission Become a Reviewer

Reading: Impact of surface parameter uncertainties on the development of a trough in the Fram Strait ...

Download

A- A+
Alt. Display

Original Research Papers

Impact of surface parameter uncertainties on the development of a trough in the Fram Strait region

Authors:

Hinnerk Ries ,

ZMAW, Meteorological Institute, University of Hamburg, Bundesstrasse 55, Hamburg 20146, DE
X close

K. Heinke Schlünzen,

ZMAW, Meteorological Institute, University of Hamburg, Bundesstrasse 55, Hamburg 20146, DE
X close

Burghard Brümmer,

ZMAW, Meteorological Institute, University of Hamburg, Bundesstrasse 55, Hamburg 20146, DE
X close

Martin Claussen,

ZMAW, Meteorological Institute, University of Hamburg, Bundesstrasse 55, Hamburg 20146; Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg 20146, DE
X close

Gerd Müller

ZMAW, Meteorological Institute, University of Hamburg, Bundesstrasse 55, Hamburg 20146, DE
X close

Abstract

The impacts of the sea-ice characteristics distribution, roughness, temperature and thermal conductivity on an on-ice moving trough in the Fram Strait on 7 March 2002 are investigated. The situation is simulated with the mesoscale transport and fluid model METRAS and the named characteristics are varied within the range of observational uncertainty. The test cases are evaluated against aircraftmeasurements performed within the ‘Fram Strait Cyclone Experiment 2002’. The model’s sensitivity on the changes in sea-ice characteristics is quantified by statistical means. The strongest impacts on the near-ground temperature are found from sea-ice temperature, manifesting as an overall bias, and the positioning of the sea-ice edge, manifesting as a phase error. Only higher than natural homogenization of the sea-ice cover leads to some reduction of the amplitude error. A reduction of the sea-ice surface roughness is performed by applying an unrealistically small roughness length of z0 = 1 mm. This reduces the negative wind speed bias, enhances the advection of contrasting air masses and improves the frontal sharpness. The thermal conductivity has the smallest influence. The lateral forcing taken from ‘European Centre for Medium-Range Weather Forecasts’ (ECMWF) reanalyses shows the strongest effect on the limited area model performance.

How to Cite: Ries, H., Schlünzen, K.H., Brümmer, B., Claussen, M. and Müller, G., 2010. Impact of surface parameter uncertainties on the development of a trough in the Fram Strait region. Tellus A: Dynamic Meteorology and Oceanography, 62(4), pp.377–392. DOI: http://doi.org/10.1111/j.1600-0870.2009.00451.x
  Published on 01 Jan 2010
 Accepted on 29 Mar 2010            Submitted on 11 Dec 2009

References

  1. Bohnenstengel , S. I . 2009 . Can a simple locality index be used to improve mesoscale model forecasts? Department Geowissenschaften, Universität Hamburg. Ph.D. thesis.  

  2. Brümmer , B. and Höber , H . 1999 . A mesoscale cyclone over the Fram Strait and its effects on sea ice . J. Geophys. Res.-Atmos. 104 ( D16 ), 19 085-19 098 .  

  3. Brümmer , B. , Launiainen , J. , Müller , G. and Schröder , D . 2005 . Framzy2002 . Second field experiment on fram strait cyclones and their impact on sea ice. Field report with measurement examples. Berichte Aus Dem Zentrum Für Meeres-Und Klimaforschung A37 .  

  4. Brümmer , B. , Schröder , D. , Müller , G. , Spreen , G. , Jahnke-Bornemann , A. and co-authors . 2008 . Impact of a Fram Strait cyclone on ice edge, drift, divergence, and concentration: possibilities and limits of an observational analysis. J. Geophys. Res.-Oceans 113 ( C12 ). https://doi.org/10.1029/2007JC004149 .  

  5. Bungert , U . 2008 . Einfluss der nestung auf die ergebnisse meteorologis-cher modelle . Department Geowissenschaften , Universität Hamburg. Ph.D. thesis .  

  6. Davies , H . 1976 . Lateral boundary formulation for multilevel prediction models . Q. J. Roy. Meteorol. Soc . 102 ( 432 ), 405 – 418 .  

  7. Deardorff , J . 1978 . Efficient prediction of ground surface-temperature and moisture, with inclusion of a layer of vegetation . J. Geophys. Res.-Oceans. Atmos . 83 ( NC4 ), 1889-1903 .  

  8. Deng , A. and Stauffer , D . 2006 . On improving 4-km mesoscale model simulations . J. Appl. Meteorol. Climatol . 45 ( 3 ), 361 – 381 .  

  9. Dierer , S. and Schlünzen , K. H . 2005 . Influence parameters for a polar mesocyclone development . Meteorol. Zeitschr 14 ( 6 ), 781 – 792 . https://doi.org/10.1127/0941-2948/2005/0077 .  

  10. Dierer , S. , Schlünzen , K. H. , Birnbaum , G. , Brümmer , B. and Müller , G . 2005 . Atmosphere-sea ice interactions during a cyclone passage investigated by using model simulations and measurements . Monthly Weather Rev . 133 ( 12 ), 3678 – 3692 .  

  11. Gandin , L. and Murphy , A . 1992 . Equitable skill scores for categorical forecasts . Monthly Weather Rev . 120 ( 2 ), 361 – 370 .  

  12. Gerrity , J . 1992 . A note on Gandin and Murphy equitable skill score . Monthly Weather Rev . 120 ( 11 ), 2709 – 2712 .  

  13. Guest , P. and Davidson , K . 1991 . The aerodynamic roughness of different types of sea ice . J. Geophys. Res.-Oceans 96 ( C3 ), 4709 – 4721 .  

  14. Kaleschke , L. , Lüpkes , C. , Vihma , T. , Haarpaintner , J. , Bochert , A. and co-authors . 2001 . ssmn sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Can. J. Remote Sens . 27 ( 5 ), 526 – 537 .  

  15. Karcher , M. , Gerdes , R. , Kauker , F. and Köberle , C . 2003 . Arctic warming: evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean . J. Geophys. Res.-Oceans 108 ( C2 ). https://doi.org/10.1029/2001JC001265 .  

  16. Karcher , M. , Gerdes , R. , Kauker , F. , Köberle , C. and Yashayaev , I . 2005 . Arctic Ocean change heralds North Atlantic freshening . Geophys. Res. Lett . 32 ( 21 ). https://doi.org/10.1029/2005GL023861 .  

  17. Lüpkes , C. and Birnbaum , G . 2005 . Surface drag in the arctic marginal sea-ice zone: a comparison of different parameterisation concepts . Bound-Layer Meteorol . 117 ( 2 ), 179 – 211 . https://doi.org/10.1007/s10546-005-1445-8 .  

  18. Lüpkes , C. and Schlünzen , K. H . 1996 . Modelling the arctic convective boundary-layer with different turbulence parameterizations. Bound.-Layer Meteorol. 79 (1), 107-130. URL: http://dx . doi.org/ 10 . 1007/13F0012007 7  

  19. Lüpkes , C. , Gryanilc , V. M. , Witha , B. , Gryschka , M. , Raasch , S. and co-authors . 2008a . Modeling convection over arctic leads with LES and a non-eddy-resolving microscale model. J. Geophys. Res.-Oceans 113 ( C9 ). https://doi.org/10.1029/2007JC004099 .  

  20. Lüpkes , C. , Vihma , T. , Birnbaum , G. and Wacker , U . 2008b . Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night . Geophys. Res. Lett . 35 ( 3 ). https://doi.org/10.1029/2007GL032461 .  

  21. Pacanowslci , R. C . 1995 . Mom 2 Documentation, User’s Guide and Reference Manual. Technical Report 3, Princeton University, Princeton, NJ, USA.  

  22. Persson , A. and Grazzini , E 2005 . User Guide to ECMWF Forecast Products. Technical Report Meteorological Bulletin M3.2, European Centre for Medium-Range Weather Forecasts.  

  23. Pielke , R. A . 2002 . Mesoscale Meteorological Modeling Pielke , R. A. Academic Press , Academic Press , USA .  

  24. Putkonen , J . 1998 . Soil thermal properties and heat transfer processes near Ny-Ålesund, northwestern Spitsbergen, Svalbard . Polar Res . 17 ( 2 ), 165 – 179 .  

  25. Rasmussen , E. , Guest , P. and Davidson , K . 1997 . Synoptic and mesoscale atmospheric features over the ice-covered portion of the Fram Strait in spring. J. Geophys. Res.-Atmos . 102 ( D12 ), 13975-13986. XXIst General Assembly of the International-Union-of-Geodesy-and-Geophysics, BOULDER, CO, JUL 02-14, 1995 .  

  26. Ries , H. and Schlünzen , K. H . 2009 . Evaluation of a mesoscale model with different surface parameterizations and vertical resolutions for the Bay of Valencia . Monthly Weather Rev . 137 ( 8 ), 2646 – 2661 . https://doi.org/10.1175/2009MWR2836.1 .  

  27. Schlünzen , K. H . 1990 . Numerical studies on the inland penetration of sea breeze fronts at a coastline with tidally flooded mudflats . Beitr Phys. Atmos . 63 , 243 – 256 .  

  28. Schlünzen , K. H. and Katzfey , J . 2003 . Relevance of sub-grid-scale land-use effects for mesoscale models . Tellus. Series A, Dynam. Meteorol. Oceanogr 55 , 232 – 246 .  

  29. Spreen , G. , Kaleschke , L. and Heygster , G . 2008 . Sea ice remote sensing using AMSR-E 89-GHz channels . J. Geophys. Res.-Oceans 113 ( C2 ). https://doi.org/10.1029/2005JC003384 .  

  30. Taylor , K . 2001 . Summarizing multiple aspects of model performance in a single diagram . J. Geophys. Res.-Atmos . 106 ( D7 ), 7183 – 7192 .  

  31. Thorndike , A. and Colony , R . 1982 . Sea ice motion in response to geostrophic winds . J. Geophys. Res.-Oceans. Atmos . 87 ( NC8 ), 5845-5852 .  

  32. Valkonen , T. , Vihma , T. and Doble , M . 2008 . Mesoscale modeling of the atmosphere over Antarctic sea ice: a late-autumn case study . Monthly Weather Rev . 136 ( 4 ), 1457 – 1474 . https://doi.org/10.1175/2007MWR2242.1 .  

  33. Vihma , T. , Hartmann , J. and Lüpkes , C . 2003 . A case study of an on-ice air flow over the Arctic marginal sea-ice zone . Bound.-Layer Meteorol . 107 ( 1 ), 189 – 217 .  

  34. von Salzen , K. , Claussen , M. and Schlünzen , K. H . 1996 . Application of the concept of blending height to the calculation of surface fluxes in a mesoscale model . Meteorol. Zeitschr 5 , 60 – 66 .  

comments powered by Disqus