Start Submission Become a Reviewer

Reading: Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: ...

Download

A- A+
Alt. Display

Original Research Papers

Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: heat and freshwater budgets

Authors:

Katrin Latarius ,

Institut für Meereskunde, KlimaCampus, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, DE
X close

Detlef Quadfasel

Institut für Meereskunde, KlimaCampus, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, DE
X close

Abstract

Six years of autonomous profiling float data from the Greenland Sea Gyre are used to detect changes in temperature and salinity of the water column on time scales from seasonal to inter-annual. The effect of ocean—atmosphere and internal ocean fluxes on heat and freshwater is largely (about 90%) confined to the upper 700 m. Throughout the water column a warming at a mean rate of 0.05 K year-1 is observed, whereas the freshwater content is dominated by inter-annual changes not containing trends. In the annual mean the Gyre exports freshwater across its boundary throughout the water column. Import of freshwater takes place only in the upper 50 m during summer. Heat is exported in the upper 50 m, while below the gyre cools the surrounding. The net effect of the gyre on the water mass conversion in the Arctic Mediterranean is small and the gyre does not re-enforce the Nordic Seas overturning circulation.

How to Cite: Latarius, K. and Quadfasel, D., 2010. Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: heat and freshwater budgets. Tellus A: Dynamic Meteorology and Oceanography, 62(4), pp.497–515. DOI: http://doi.org/10.1111/j.1600-0870.2009.00453.x
  Published on 01 Jan 2010
 Accepted on 29 Mar 2010            Submitted on 19 Aug 2009

References

  1. Berry , D. I. and Kent , E. C . 2009 . A new air-sea interaction Grid-ded dataset from ICOADS with uncertainty estimates . Manuscript accepted by B. Am. Meteorol. Soc . 90 , 645 – 656 .  

  2. Blindheim , J. and Østerhus , S. 2005 . The Nordic Seas, main oceanographic features . In: The Nordic Seas -An Integrated perspective (eds H. Drange , T. Dokken , T. Furevilc , R. Gerdes , and W. Berger ). Geophysical Monograph 158, American Geophysical Union , Washington, DC , 11 – 37 .  

  3. Böhme , L. and Send , U . 2005 . Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments. Deep-Sea Res . Part 11 52 , 651 – 664 .  

  4. Bogorodsky , R. V. , Makshtas , A. P. , Nagurny , A. P. , Sorchenlco , V. G. and Ivanow , R. V . 1987 . Features of the ocean-atmosphere meso scale interaction in the Greenland Sea area (in Russian) . Meteorol. Gidrol . 10 , 69 – 74 .  

  5. Brest , C. L. , Rossow , W. B. and Roiter , M. D . 1997 . Update of radiance calibration for ISCCP . J. Atmos. Ocean. Technol . 14 , 1091 – 1109 .  

  6. Budéus , G. and Ronski , S . 2009 . An integral view of the hydrographic development in the Greenland Sea over a decade . Open Ocean J . 3 , 8 – 39 .  

  7. Carmack , E. C. and Aagaard , K . 1973 . On the deep water of the Greenland Sea . Deep-Sea Res . 20 , 687 – 715 .  

  8. De Boyer Montégut , C. , Mardec , G. , Fischer , A. S. , Lazar , A. and Iudicone , D . 2004 . Mixed layer depth over the global ocean: an examination of profile data and a profile based climatology. J. Geophys. Res . 109 , https://doi.org/10.1029/2004JC002378 .  

  9. De Steur , L. , Hansen , E. , Gerdes , R. , Karcher , M. , Fahrbach , E. and co-authors . 2009 . Freshwater fluxes in the East Greenland Current: a decade of observations. Geophys. Res. Lett . 36 , L23611 , https://doi.org/10.1029/2009GL041278 .  

  10. Dickson , R. , Lazier , J. , Meincke , J. , Rhines , P. and Swift , J . 1996 . Long-term coordinated changes in the convective activity of the North Atlantic . Prog. Oceanogr . 38 , 241 – 295 .  

  11. Dickson , R. , Rudels , B. , Dye , S. , Karcher , M. , Meincke , J. and co-authors . 2007 . Current estimates of freshwater flux through Arctic and Subarctic Seas. Prog. Oceanogr . 73 , 210 – 230 .  

  12. Eldevik , T. , Nilsen , J. E. Ø. , Iovino , D. , Olsson , K. A. , Sandø , A. B. and co-authors . 2009 . Observed sources and variability of Nordic seas overflow. Nat. Geosci . 2 , 402 – 410 .  

  13. Hansen , B. , Østerhus , S. , Turrell , W. R. , Jónsson , S. , Valdimarsson , H. and co-authors . 2008 . The inflow of Atlantic Water, Heat, and Salt to the Nordic Seas across the Greenland-Scotland Ridge. In: Arctic-Subarctic Ocean Fluxes (eds R. R. Dickson , J. Meincke and P. Rhines ). Springer, Dordrecht , The Netherlands , 263 – 287 .  

  14. Holliday , N. P. , Hughes , S. L. , Bacon , S. , Beszczynska-Möller , A. , Hansen , B. and co-authors . 2008 . Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys. Res. Lett . 35 , L03615 , https://doi.org/10.1029/2007/GL032675 .  

  15. Holfort , J. , Hansen , E. , Østerhus , S. , Dye , S. , Jonsson , S. and co-authors . 2008 . Freshwater fluxes East of Greenland. In: Arctic-Subarctic Ocean Fluxes (eds R. R. Dickson , J. Meincke and P. Rhines ). Springer, Dordrecht , The Netherlands , 263 – 287 .  

  16. Hopkins , T. S . 1991 . The GIN Sea — a synthesis of its physical oceanography and literature review 1972-1985 . Earth Sci. Re v . 30 , 175 – 319 .  

  17. Isachsen , P. E. , Mauritzen , C. and Svendson , H . 2007 . Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes. Deep-Sea Res . Part 1 54 , 22 – 41 .  

  18. Jacob , D. and Podzun , R . 1997 . Sensitivity studies with the regional climate model REMO . Meteorol. Atmos. Phys . 63 , 119 – 129 .  

  19. Jeansson , E. , Jutterström , S. , Rudels , B. , Anderson , L. G. , Olsson , K. A. and co-authors . 2008 . Sources to the East Greenland Current and its contribution to the Denmark Strait Overflow. Prog. Oceanogr . 78 , 12 – 28 .  

  20. Jost , V. , Balcan , S. and Fenning , K . 2002 . HOAPS — a new satellite derived freshwater flux climatology . Meteorol. Z . 11 , 61 – 70 .  

  21. Kaleschke , L. , Lüpkes , C. , Vihma , T. , Haarpaintner , J. , Bochert , A. and co-authors . 2001 . ssmn sea ice remote sensing for mesoscale ocean—atmosphere interaction analysis. Can. J. Remote Sens . 27 , 526 – 537 .  

  22. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. and co-authors . 1996 . The NCEP/NCAR 40-year reanalysis project , Bull. Am. Meteorol. Soc . 77 , 437 – 470 .  

  23. Karstensen , J. , Schlosser , P. , Wallace , D. W. R. , Bullister , J. L. and Blindheim , J . 2005 . Water mass transformation in the Greenland Sea during the 1990s . J. Geophys. Res . 110 , C07022 , https://doi.org/10.1029/2004JC002510 .  

  24. Kern , S. , Kaleschke , L. and Spreen , G . 2010 . Trends and variability of the Nordic Seas ice cover derived from satellite microwave radiometry at 85 GHz. Tellus 62A, this issue .  

  25. Kvingedal , B . 2005 . Sea-ice extent and variability in the Nordic Seas, 1967-2002. In: The Nordic Seas — An Integrated perspective (eds H. Drange , T. Dokken , T. Furevilc , R. Gerdes and W. Berger ). Geophysical Monograph 158, American Geophysical Union , Washington, DC , 39 – 49 .  

  26. Lherminier , P. , Gascard , J.-C. and Quadfasel , D . 1999 . The Greenland Sea in Winter 1993 and 1994: preconditioning for deep convection. Deep-Sea Res . Part 11 46 , 1199 – 1235 .  

  27. Lorbacher , K. , Dommenget , D. , Niiler , P. P. and Köhl , A . 2006 . Ocean mixed layer depth: a subsurface proxy of ocean-atmosphere variability. J. Geophys. Res . 111 , https://doi.org/10.1029/2003JC002157 .  

  28. Marshall , J. and Schott , E 1999 . Open-ocean convection. Observations, theory, and models . Rev. GeoPhys . 37 , 1 – 64 .  

  29. Mauritzen , C . 1996 . Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme . Deep-Sea Res. Part I 43 , 769 – 806 .  

  30. Meincke , J. , Rudels , B. and Friedrich , H. J . 1997 . The Arctic Ocean — Nordic Seas thermohaline system. ICES J . Mar Sc i . 54 , 283 – 299 .  

  31. Molteni , F. , Buizza , T. N. and Petriliagis , T . 1996 . The ECMWF ensemble prediction system: methodology and validation . Q. J. R. Meteorol. Soc . 122 , 73 – 119  

  32. Nansen , F . 1906 . Northern waters. Captain Roald Amundsen’s oceano-graphic observations in the Arctic Seas in 1901. Vidensk. Selsk. Skr. I. Mathematisk-Natur. Klasse, Christiania, j. Dybwad, 145 pp .  

  33. Nilsen , J. E. Ø. and Nilsen , F . 2007 . The Atlantic water flow along the Wring Plateau: detecting frontal structures in oceanic station time series. Deep-Sea Res . Part 1 54 , 297 – 319 .  

  34. Nøst , O. A. and Isachsen , P. E . 2003 . The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics . J. Mar. Res . 61 , 175 – 210 .  

  35. Quadfasel , D. , Gascard , J . -C. and Koltermann, K. -P. 1987. Large-scale oceanography in Fram Strait during MIZEX 84. J. Geophys. Res . 92 , 6719 – 6728 .  

  36. Renfew , I. A. , Moore , G. W. K. , Guest , P. S. and Bumke , K . 2002 . A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses . J. Phys. Oceanogr 32 , 383 – 400 .  

  37. Ronslci , S. and G. Budéus . 2005 . Time series of winter convection in the Greenland Sea . J. Geophys. Res . 110 , C04015 , https://doi.org/10.1029/2004JC002318,11p .  

  38. Rudels , B. , Quadfasel , D. , Friedrich , H. and Houssais , M.-N . 1989 . Greenland Sea Convection in the winter of 1987-1988 . J. Geophys. Res . 94 , 3223 – 3227 .  

  39. Rudels , B . 1995 . The thermohaline circulation of the Arctic Ocean and the Greenland Sea . Phil. Trans. R. Soc . A352 , 287 – 299 .  

  40. Rudels , B. , Friedrich , H. J. and Quadfasel , D . 1999 . The Arctic circumpolar boundary current. Deep-Sea Res . Part 11 46 , 1023 – 1062 .  

  41. Rudels , B. , Meyer , R. , Fahrbach , E. , Ivanov , V. V , Osterhus , S. and co-authors . 2000 . Water mass distribution in Fram Strait and over the Yermalc Plateau in summer 1997. Ann. Geophys . 18 , 687 – 705 , Springer-Verlag .  

  42. Smith , S. R. , Legler , D. M. and Verzone , K. V . 2001 . Quantifying uncertain ties in NCEP reanalyses using high-quality research vessel observations . J. Clim . 14 , 4062 – 4072 .  

  43. Spreen , G. , Kaleschke , L. and Heygster , G . 2008 . Sea ice remote sensing using AMSR-E 89-GHz channels . J. Geophys. Res . 113 , CO2503 , https://doi.org/10.1029/2005JC003384 .  

  44. Tomita , H. , Kubota , M. , Cronin , M. F. , Iwasaki , S. , Konda , M. and co-authors . 2010 . An assessment of surface heat fluxes from J-OFUR02 at the KEO/JKEO sites. J. Geophys. Res. — Oceans 115 , C03018 , https://doi.org/10.1029/2009JC005545 .  

  45. Voet , G. , Quadfasel , D. , Mork , K. A. and Søiland , H . 2010 . The middepth circulation of the Nordic Seas derived from profiling float observations. Tellus 62A, this issue .  

  46. Yu , L. , Weller , R. A. and Sun , B . 2004 . Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean . J. Clim . 17 , 2096 – 2118 .  

  47. Yu , L. and Weller , R. A . 2007 . Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005) . Bull. Am. Meteorol. Soc . 88 , 527 – 539 .  

comments powered by Disqus