Start Submission Become a Reviewer

Reading: Ground validation of oceanic snowfall detection in satellite climatologies during LOFZY

Download

A- A+
Alt. Display

Original Research Papers

Ground validation of oceanic snowfall detection in satellite climatologies during LOFZY

Authors:

Christian Klepp ,

Meteorologisches Institut der Universität Hamburg, DE
X close

Karl Bumke,

Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Kiel, DE
X close

Stephan Bakan,

Max-Planck Institut für Meteorologie, Hamburg, DE
X close

Peter Bauer

ECMWF, Reading, GB
X close

Abstract

A thorough knowledge of global ocean precipitation is an indispensable prerequisite for the understanding of the water cycle in the global climate system. However, reliable detection of precipitation over the global oceans, especially of solid precipitation, remains a challenging task. This is true for both, passive microwave remote sensing and reanalysis based model estimates. The optical disdrometer ODM 470 is a ground validation instrument capable of measuring rain and snowfall on ships even under high wind speeds. It was used for the first time over the Nordic Seas during the LOFZY 2005 campaign. A dichotomous verification of precipitation occurrence resulted in a perfect correspondence between the disdrometer, a precipitation detector and a shipboard observer’s log. The disdrometer data is further pointto-area collocated against precipitation from the satellite based Hamburg Ocean Atmosphere Parameters and fluxes from Satellite data (HOAPS) climatology. HOAPS precipitation turns out to be overall consistent with the disdrometer data resulting in a detection accuracy of 0.96. The collocated data comprises light precipitation events below 1 mm h–1. Therefore two LOFZY case studies with high precipitation rates are presented that indicate plausible HOAPS satellite precipitation rates. Overall, this encourages longer term measurements of ship-to-satellite collocated precipitation in the near future.

How to Cite: Klepp, C., Bumke, K., Bakan, S. and Bauer, P., 2010. Ground validation of oceanic snowfall detection in satellite climatologies during LOFZY. Tellus A: Dynamic Meteorology and Oceanography, 62(4), pp.469–480. DOI: http://doi.org/10.1111/j.1600-0870.2009.00459.x
  Published on 01 Jan 2010
 Accepted on 12 Apr 2010            Submitted on 7 Aug 2009

References

  1. Adler , R. F. , Huffman , G. , Chang , A. , Ferraro , R. , Xie , P. and co-authors. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present) . J. Hydrometeorol . 4 , 1147 – 1167 .  

  2. Andersson , A . 2009 . The HOAPS climatology: Evaluation and Applications . Dissertation , Max-Planck Institut für Meteorologie , Reports on Earth System Science, 72,2009, BundesstraBe 53, Hamburg, Germany, ISSN 1614-1199, pp . 178 .  

  3. Bauer , P. , Lopez , R , Benedetti , A. , Salmond , D. and Moreau , E . 2006a . Implementation of 1D+4D-var assimilation of precipitation-affected microwave radiances at ECMWF: 1D-var . Quart. J. Roy. Meteor Soc . 132 ( 620 ), 2277 – 2306 .  

  4. Bauer , P. , Moreau , E. , Chevallier , F. and Keeffe , U. 2006b. Multiple-scattering microwave radiative transfer for data assimilation applications . Quart. J. Roy. Meteor. Soc . 132 ( 617 ), 1259-1281 .  

  5. Brandes , E. A. , Ikeda , K. , Zhang , G. , Schönhuber , M. and Rasmussen , R. M . 2007 . A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer . J. Appl. Met. Clim . 46 ( 5 ), 634 – 650 .  

  6. Brümmer , B. , Müller , G. , Klepp , C. , Spreen , G. , Romeiser , R. and co-authors . 2010 . Characteristics and impact of a gale-force storm field over the Norwegian Sea. Tellus 62A, this issue .  

  7. Bumke , K. , Clemens , M. , Grassl. , H. , Pang , S. , Peters , G. and co-authors . 2004 . Accurate areal precipitation measurements over the land and sea (APOLAS) , BALTEX Newslett . 6 , 9 – 13 .  

  8. Chahine , M. T . 1992 . The hydrological cycle and its influence on climate . Nature 359 , 373 – 380 .  

  9. Clemens , M . 2002 . Machbarkeitsstudie zur räumlichen Niederschlags-analyse aus Schiffsmessungen iiber der Ostsee . Dissertation , Institut fur Meereskunde an der Christian-Albrechts-Universität Kiel .  

  10. Clemens , M. and Bumke , K . 2002 . Precipitation fields over the Baltic Sea derived from ship rain gauge measurements on merchant ships. Boreal Environ. Res . 7 , ISSN 1239-6095 , 425 – 436 .  

  11. Ebert , B . 2005 . Validation Working Group Report, Recommendation 4. Eumetsat Proceedings, P.44, Second International Precipitation Working Group Workshop, ISBN 92-9110-070-6 , 15 – 19 .  

  12. Ferraro , R . 2007 . Past, present and future of microwave operational rainfall algorithms. In: Measuring Precipitation from Space, Advances in Global Change Research 28, Eds. V. Levizzani , P. Bauer , and J. Turk , Springer, Dordrecht , The Netherlands , ISBN 13 978-1-4020-5834-9 , 189 – 198 .  

  13. Großklaus , M . 1996 . Niederschlagsmessung auf dem Ozean von fahren-den Schiffen . Dissertation , Institut für Meereskunde an der Christian-Albrechts-Universität Kiel .  

  14. Großklaus , M. , Uhlig , K. and Hasse , L . 1998 . An optical disdrometer for use in high wind speeds . J. Atmos. Oceanic Technol . 15 , 1051 – 1059 .  

  15. Hobbs , P. V , Shupe , M. and Uttal , T . 2001 . Airborne studies of cloud structures over the Arctic Ocean and comparisons with retrievals from ship-based remote sensing measurements . J. Geophys. Res . 106 , 15 029-15 044 .  

  16. Hogan , A . 1994 . Objective estimates of airborne snow properties . J. Atmos. Oceanic Technol . 11 , 432 – 444 .  

  17. Huffman , G. , Adler , R. , Arkin , P. , Chang , A. , Ferraro , R. and co-authors . 1997 . The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Am. Met. Soc . 78 , 5 – 20 .  

  18. Klepp , C.-P. , Balcan , S. and Graßl , H . 2003 . Improvements of satellite derived cyclonic rainfall over the North Atlantic . J. Climate 16 , 657 – 669 .  

  19. Klepp , C.-P. , Balcan , S. and Graßl , H . 2005 . Missing North Atlantic cyclonic precipitation in the ECMWF model and ERA-40 data detected through the satellite climatology HOAPS II . Met. Z . 14 , 809 – 821 .  

  20. Kummerow , C. , Olson , W. S. and Giglio , L . 1996 . A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , IEEE Trans. Geosci. Remote Sens . 34 , 1213 – 1232 .  

  21. Kummerow , C. , Hong , Y. , Olson , W.S. , Yang , S. , Adler , R.F. and co-authors. 2001. The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors . J. Appl. Meteorology . 40 , 1801– 1820 .  

  22. Lempio , G. , Bumke , K. and Macke , A . 2007 . Measurement of solid precipitation with an optical disdrometer. Adv . Geosc i . 10 , 91 – 97 .  

  23. Levizzani , V. , Bauer , P. and Turk , F. J. Eds., 2007. Measuring Precipitation from Space, EURAINSAT and the future. Advances in Global Change Research , Vol. 28 , Springer, Dordrecht, The Netherlands , 724 .  

  24. Löffler-Mang , M. and Joss , J . 2000 . An optical disdrometer for measuring size and velocity of hydrometeors . J. Atmos. Oceanic Technol . 17 ( 2 ), 130 – 139 .  

  25. Lundberg , A. and Halldin , S . 2001 . Snow measurements techniques for land-surface-atmosphere exchange studies in boreal landscapes . Theor Appl. Climatol . 70 , 215 – 230 .  

  26. Macke , A. , Francis , P. N. , Mc Farquhar , G. M. and Kinne , S . 1998 . The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds, J . Atmos. Sci . 55 ( 17 ), 2874 – 2883 .  

  27. Mahlke , H . 2007 . Niederschlagsmessung mit einem neuartigen optis-chen Distrometer (Flying Parsivel Sonde) , Diplomarbeit, Institut Or Meteorologie und Klimaforschung , Karlsruhe, Germany , pp. 122  

  28. Marshall , J. , Dobson , F. , Moore , K. , Rhines , P. , Visbeck , M. and co-authors. 1998. The labrador sea deep convection experiment. Bull. Amer Meteor. Soc . 79 , 2033 – 2058 .  

  29. Oki , T . 1999 . The global water cycle. Global Energy and Water Cycles (eds K.A. Browning and R. J. Gurney , Cambridge, University Press , 10 – 29 .  

  30. Rudolf , B. and Schneider , U . 2005 . Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Eumetsat Proceedings, P.44, Second International Precipitation Working Group Workshop, ISBN 92-9110-070-6 , 231 – 247 .  

  31. Schlosser , C. A. and Houser , P. R . 2007 . Assessing a satellite-era perspective of the global water cycle . J. Climate 20 ( 7 ), 1316 – 1338 .  

  32. Sorteberg , A. , Kwamto , N. G. and Byrkjedal , D . 2005 . Wintertime Nordic Seas cyclone variability and its impact on oceanic volume transports into the Nordic Seas. The Nordic Seas (eds Drange, and co-editors), AGU Monograph , 137 – 157 .  

  33. Trenberth , K. E. , Smith , L. , Qian , T. , Dai , A. and Fasullo , J . 2007 . Estimates of the global water budget and its annual cycle using observational and model data . J. Hydrometeorol., Special Edition , 8 , 758 – 769 , https://doi.org/10.1175/JHM600.1 .  

  34. Wang Z. , Sassen , K. , Whiteman , D. N. and Demoz , B. B . 2004 . Studying altocumulus with ice virga using ground-based active and passive remote sensors , J. Appl. Meteorol . 43 , 449 – 460 .  

  35. Yang , D. , Elomaa , E. , Tuominen , A. , Aaltonen , A. and Goodison , B . 1999 . Wind-induced precipitation undercatch of the Hellmann gauges . Nordic Hydrol . 30 ( 1 ), 57 – 80 .  

comments powered by Disqus