Start Submission Become a Reviewer

Reading: Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake cal...

Download

A- A+
Alt. Display

Original Research Papers

Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations

Authors:

J. Klingberg ,

Department of Plant and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-40530 Gothenburg, SE
X close

M. Engardt,

Swedish Meteorological and Hydrological Institute, SE-60176 Norrköping, SE
X close

J. Uddling,

Department of Plant and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-40530 Gothenburg, SE
X close

P.E. Karlsson,

Swedish Environmental Research Institute, P.O. Box 5302, SE-40014 Gothenburg, SE
X close

H. Pleijel

Department of Plant and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-40530 Gothenburg, SE
X close

Abstract

The negative impacts of surface ozone (O3) on vegetation are determined by external exposure, leaf gas exchange and plant antioxidant defence capacity, all dependent on climate and CO2 concentrations. In this study the influence of climate change on simulated stomatal O3 uptake of a generic crop and a generic deciduous tree at ten European sites was investigated, using the LRTAP Mapping Manual stomatal flux model. O3 concentrations are calculated by a chemistry transport model (MATCH) for three 30-yr time-windows (1961–1990, 2021–2050, 2071–2100), with constant precursor emissions and meteorology from a regional climate model (RCA3). Despite substantially increased modelled future O3 concentrations in central and southern Europe, the flux-based risk for O3 damage to vegetation is predicted to remain unchanged or decrease at most sites, mainly as a result of projected reductions in stomatal conductance under rising CO2 concentrations. Drier conditions in southern Europe are also important for this result. At northern latitudes, the current parameterisation of the stomatal conductance model suggest O3 uptake to be mainly limited by temperature. This study demonstrates the importance of accounting for the influences by climate and CO2 on stomatal O3 uptake, and of developing their representation in models, for risk assessment involving climate change.

How to Cite: Klingberg, J., Engardt, M., Uddling, J., Karlsson, P.E. and Pleijel, H., 2011. Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus A: Dynamic Meteorology and Oceanography, 63(1), pp.174–187. DOI: http://doi.org/10.1111/j.1600-0870.2010.00465.x
2
Views
1
Downloads
28
Citations
  Published on 01 Jan 2011
 Accepted on 23 Apr 2010            Submitted on 18 Sep 2009

References

  1. Ainsworth , E. A. and Rogers , A . 2007 . The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environ-mental interactions . Plant Cell Environ . 30 , 258 – 270 .  

  2. Andersson , C. and Engardt , M . 2010 . European ozone in a future climate: importance of changes in dry deposition and isoprene emissions . J. Geophys. Res.-Atmos . 115 , D02303 . https://doi.org/10.1029/2008JDO11690 .  

  3. Andersson , C. , Langner , J. and Bergstrom , R. 2007. Interannual variation and trends in air pollution over Europe due to climate variability during 1958-2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus 59B , 77 - 98 .  

  4. Ashmore , M. , Emberson , L. , Karlsson , P. E. and Pleijel , H . 2004 . New directions: a new generation of ozone critical levels for the protection of vegetation in Europe . Atmos. Environ . 38 , 2213 – 2214 .  

  5. Ashmore , M. R . 2005 . Assessing the future global impacts of ozone on vegetation . Plant Cell Environ . 28 , 949 – 964 .  

  6. Bernacchi , C. J. , Calfapietra , C. , Davey , P. A. , Wittig , V. E. , Scarascia-Mugnozza , G. E. and co-authors . 2003. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (Pop-FACE) during the first growth cycle and immediately following cop-pice. New PhytoL 159 , 609 - 621 .  

  7. Bunce , J. A . 2000 . Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentra-tions of carbon dioxide in the field . Global Chang. Biol . 6 , 371 – 382 .  

  8. Dentener , F. , Stevenson , D. , Ellingsen , K. , van Noije , T. , Schultz , M. and co-authors . 2006. The global atmospheric environment for the next generation. Environ. Sci. TechnoL 40 , 3586 - 3594 .  

  9. Derwent , R. G. , Simmonds , P. G. , Manning , A. J. and Spain , T. G . 2007 . Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland . Atmos. Environ . 41 , 9091 – 9098 .  

  10. Domec , J. C. , Palmroth , S. , Ward , E. , Maier , C. A. , Therezien , M. and Oren , R . 2009 . Acclimation of leaf hydraulic conductance and stom-atal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization . Plant Cell Environ . 32 , 1500 – 1512 .  

  11. Ellsworth , D. S . 1999 . CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ . 22 , 461 – 472 .  

  12. Emberson , L. , Simpson , D. , Tuovinen , J. P. , Ashmore , M. and Cam-bridge , H. M . 2000a. Towards a model of ozone deposition and stom-atal uptake over Europe. EMEP MSC-W Note 6/2000 . Norwegian Meteorological Institute, Oslo, Norway. Available at: http://www.emep.int  

  13. Emberson , L. D. , Ashmore , M. R. , Cambridge , H. M. , Simpson , D. and Tuovinen , J. P . 2000b . Modelling stomatal ozone flux across Europe . Environ. Pollut . 109 , 403 .  

  14. Emberson , L. D. , Biiker , P. and Ashmore , M. R . 2007 . Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech and oak across different climate regions . Environ. Pollut . 147 , 454 – 466 .  

  15. Engardt , M. , Bergstrom , R. and Andersson , C . 2009 . Climate and emis-sion changes contributing to changes in near-surface ozone in Europe over the coming decades-results from model studies . Ambio 38 , 452 – 458 .  

  16. Fuhrer , J . 2009 . Ozone risk for crops and pastures in present and future climates . Naturwissenschaften 96 , 173 – 194 .  

  17. Grant , C. D. , Groenevelt , P. H. and Robinson , N. I . 2010 . Application of the Groenevelt-Grant soil water retention model to predict the hydraulic conductivity. Aust. J. Soil Res . In press.  

  18. Groenevelt , P. H. and Grant , C. D . 2004 . A new model for the soil-water retention curve that solves the problem of residual water contents. Eur. J. Soil Sc i . 55 , 479 – 485 .  

  19. Gunderson , C. A. , Sholtis , J. D. , Wullschleger , S. D. , Tissue , D. T. , Han-son , P. J. and co-authors . 2002 . Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liq-uidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant Cell Environ. 25 , 379 - 393 .  

  20. Hall , D. G. M. , Reeve , M. J. , Thomson , A. J. and Wright , V. E 1977 . Wa-ter retention, porosity and density of field soils. Technical Monograph No 9. Soil Survey, Rothhamstead Experimental Station, UK.  

  21. Harmens , H. , Mills , G. , Emberson , L. D. and Ashmore , M. R . 2007 . Implications of climate change for the stomatal flux of ozone: a case study for winter wheat . Environ. Pollut . 146 , 763 – 770 .  

  22. Hayes , F. , Mills , G. , Harmens , H. and Norris , D . 2007 . Evi-dence of Widespread Ozone damage to Vegetation in Europe (1990-2006). Programme Coordination Centre for the ICP Vegeta-tion, Centre for Ecology and Hydrology, UK, pp. 58. Available at: http://icpvegetation.ceh.ac.uk.  

  23. Häggmark , L. , Ivarsson , K. I. , Gollvilc , S. and Olofsson , R . 0. 2000 . MESAN, an operational mesoscale analysis system . Tellus 52A , 2 – 20 .  

  24. Jacob , D. J. and Winner , D. A . 2009 . Effect of climate change on air quality . Atmos. Environ . 43 , 51 – 63 .  

  25. Jarvis , P. G . 1976 . The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field . Phil. Trans. R. Soc., Lond., B 87 , 593 – 610 .  

  26. Jones , H. G . 1992 . Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology. 2nd Edition. Cambridge University Press , Cambridge , pp. 428 .  

  27. Karlsson , P. E. , Braun , S. , Broadmeadow , M. , Elvira , S. , Emberson , L. and co-authors . 2007a . Risk assessments for forest trees: the perfor-mance of the ozone flux versus the AOT concepts. Environ. Pollut . 146 , 608 - 616 .  

  28. Karlsson , P. E. , Tang , L. , Sundberg , J. , Chen , D. , Lindskog , A. and co-authors . 2007b . Increasing risk for negative ozone impacts on veg-etation in northern Sweden. Environ. Pollut . 150 , 96 - 106 .  

  29. Keel , S. G. , Pepin , S. , Leuzinger , S. and Korner , C . 2007 . Stomatal conductance in mature deciduous forest trees exposed to elevated CO2 . Trees 21 , 151 – 159 .  

  30. Kjellstrom , E. , Bärring , L. , Gollvilc , S. , Hansson , U. , Jones , C. and co-authors . 2005 . A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). In: SMHI Reports Meteorology and Climatology No. 108 . SMHI, SE-60176 Norrkoping, Sweden, 54 .  

  31. Klingberg , J. , Danielsson , H. , Simpson , D. and Pleijel , H . 2008 . Com-parison of modelled and measured ozone concentrations and meteo-rology for a site in south-west Sweden: implications for ozone uptake calculations . Environ. Pollut . 155 , 99 – 111 .  

  32. Klingberg , J. , Björkman , M. P. , Pihl Karlsson , G. and Pleijel , H . 2009 . Observations of ground-level ozone and NO2 in northernmost Swe-den, including the Scandian Mountain Range . Ambio 38 , 448 – 451 .  

  33. Korner , C . 2006 . Significance of temperature in plant life. In: Plant Growth and Climate Change (eds J. I. L. Morison and M. D. More-craft ), Blackwell Publishing , Oxford, UK , 48 - 69 .  

  34. Langner , J. , Bergstrom , R. and Foltescu , V . 2005 . Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe . Atmos. Environ . 39 , 1129 – 1141 .  

  35. Larcher , W . 2003 . Physiological Plant Ecology . 4th Edition , Springer-Verlag , Berlin, Germany , 513 .  

  36. Linderholm , H. W . 2006 . Growing season changes in the last century . Agric. Forest Meteorol . 137 , 1 – 14 .  

  37. LRTAP Convention 2004 . Manual on methodologies and criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. Updated August 2008. Available and con-tinuously updated at: http://www.icpmapping.org .  

  38. Maier , C. A. , Palmroth , S. and Ward , E . 2001 . Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concen-tration . Tree PhysioL 28 , 597 – 606 .  

  39. Medlyn , B. E. , Barton , C. V. M. , Broadmeadow , M. S. J. , Ceulemans , R. , De Angelis , P. and co-authors . 2001 . Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New PhytoL 149 , 247 - 264 .  

  40. Meleux , F. , Solmon , F. and Giorgi , F . 2007 . Increase in summer Eu-ropean ozone amounts due to climate change . Atmos. Environ . 41 , 7577 – 7587 .  

  41. Menzel , A. , Sparks , T. H. , Estrella , N. , Koch , E. , Aaasa , A. and co-authors . 2006 . European phenological response to climate change matches the warming pattern . Global Chang. Biol . 12 , 1969– 1976 .  

  42. Monteith , J. and Unsworth , M. H . 2008 . Principles of Environmental Physics . 3rd Edition. Academic Press , London , 418 .  

  43. Musselman , R. C. , Lefohn , A. S. , Massman , W. J. and Heath , R. L . 2006 . A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects . Atmos. Environ . 40 , 1869 – 1888 .  

  44. Nakicenovic , N. , Alcamo , J. , Davis , G. , Vries , B. ., Fenhann , J. and co-authors. 2000. Emission Scenarios: A special report of IPCC Working Group III . Cambridge University Press , Cambridge, UK , 599 .  

  45. Pleijel , H. , Danielsson , H. , Vandermeiren , K. , Blum , C. , Colls , J. and co-authors . 2002 . Stomatal conductance and ozone exposure in relation to potato tuber yield-results from the European CHIP programme. Eur. J. Agron . 17 , 303 - 317 .  

  46. Pleijel , H. , Danielsson , H. , Ojanpera , K. , Temmerman , L. D. , Hogy , P. and co-authors . 2004. Relationships between ozone exposure and yield loss in European wheat and potato-a comparison of concentration-and flux-based exposure indices. Atmos. Environ . 38 , 2259-226 9 .  

  47. Pleijel , H. , Danielsson , H. , Emberson , L. , Ashmore , M. R. and Mills , G . 2007 . Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux-response relationships for European wheat and potato . Atmos. Environ . 41 , 3002 – 3040 .  

  48. Prather , M. , Gauss , M. , Berntsen , T. , Isalcsen , I. , Sundet , J. and co-authors . 2003 . Fresh air in the 21st century? Geophys. Res. Lett . 30 , 1100 . https://doi.org/10.1029/2002GL016285 .  

  49. Robertson , L. , Langner , J. and Engardt , M . 1999 . An Eulerian limited-area atmospheric transport model . J. AppL MeteoroL 38 , 190 – 210 .  

  50. Simpson , D. and Emberson , L . 2006 . Ozone fluxes-updates, chapter 5 in EMEP status report 1/2006, Transboundary acidification, eutrophi-cation and ground level ozone in Europe since 1990 to 2004 . Available at : www.emep.int .  

  51. Simpson , D. , Ashmore , M. R. , Emberson , L. and Tuovinen , J. P . 2007 . A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study . Environ. Pollut . 146 , 715 – 725 .  

  52. Sitch , S. , Cox , P. M. , Collins , W. J. and Huntingford , C . 2007 . Indirect radiative forcing of climate change through ozone effects on the land-carbon sink . Nature 448 , 791 – 794 .  

  53. Stevenson , D. S. , Dentener , E J. , Schultz , M. G. , Ellingsen , K. , van Noije , T. P. C. and co-authors . 2006 . Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res.-Atmos . 111 , D08301 . https://doi.org/10.1029/2005JD006338 .  

  54. Taylor , G. , Tallis , M. J. , Giardina , C. P. , Percy , K. E. , Miglietta , F. and co-authors . 2008 . Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biol . 14 , 264 - 275 .  

  55. The Royal Society 2008 . Ground-level ozone in the 21st century: future trends, impacts and policy implications. RS Policy docu-ment 15/08, London, pp. 133. Available at: http://royalsociety.org/displaypagedoc.asp?id=31506.  

  56. Tilmes , S. , Brandt , J. , Flatoy , F. , Bergstrom , R. , Flemming , J. and co-authors . 2002 . Comparison of five eulerian air pollution forecasting systems for the summer of 1999 using the German ozone monitoring data. J. Atmos. Chem . 42 , 91 - 121 .  

  57. Tuovinen , J. P. , Simpson , D. , Emberson , L. , Ashmore , M. and Gerosa , G . 2007 . Robustness of modelled ozone exposures and doses . Environ. Pollut . 146 , 578 – 586 .  

  58. Tuovinen , J. P. , Emberson , L. and Simpson , D . 2009 . Modelling ozone fluxes to forests for risk assessment: status and prospects. Ann . For Sc i . 66 , 401 .  

  59. Uddling , J. , Gunthardt-Goerg , M. S. , Matyssek , R. , Olcsanen , E. , Pleijel , H. and co-authors . 2004. Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmos. Environ . 38 , 4709-471 9 .  

  60. Uddling , J. , Teclaw , R. M. , Kubiske , M. E. , Pregitzer , K. S. and Ellsworth , D. S . 2008 . Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone . Tree Physiol . 28 , 1231 – 1243 .  

  61. Uddling , J. , Teclaw , R. M. , Pregitzer , K. S. and Ellsworth , D. S . 2009 . Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone . Tree PhysioL 29 , 1367 – 1380 .  

  62. Van Dingenen , R. , Dentener , F. J. , Raes , F. , Krol , M. C. , Emberson , L. and co-authors . 2009 . The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ . 43 , 604 - 618 .  

  63. van Loon , M. , Vautard , R. , Schaap , M. , Bergstrom , R. , Bessagnet , B. and co-authors . 2007. Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ . 41 , 2083-209 7 .  

  64. Vingarzan , R . 2004 . A review of surface ozone background levels and trends . Atmos. Environ . 38 , 3431 – 3442 .  

  65. Wall , G. W. , Adam , N. R. , Brooks , T. J. , Kimball , B. A. , Pinter , P. J. and co-authors . 2000 . Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitro-gen regimes. 2. Net assimilation and stomatal conductance of leaves. Photosyn. Res . 66 , 79 - 95 .  

  66. Wall , G. W. , Garcia , R. L. , Kimball , B. A. , Hunsaker , D. J. , Pinter , P. J. and co-authors . 2006 . Interactive effects of elevated carbon dioxide and drought on wheat. Agron. J . 98 , 354 - 381 .  

comments powered by Disqus