Start Submission Become a Reviewer

Reading: Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard

Download

A- A+
Alt. Display

Original Research Papers

Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard

Authors:

Tiina Kilpeläinen ,

The University Centre in Svalbard, 9171 Longyearbyen; Geophysical Institute, University of Bergen, NO
X close

Timo Vihma,

Finnish Meteorological Institute, Helsinki, FI
X close

Haraldur Ólafsson

Geophysical Institute, University of Bergen, NO; University of Iceland and Icelandic Meteorological Office, Reykjavik, IS
X close

Abstract

The spatial variability of near-surface variables and turbulent surface fluxes was investigated in three Arctic fjords in Svalbard applying the Weather Research and Forecasting (WRF) mesoscale model. Ten real cases from winter and spring 2008, representing the most common large-scale flow directions, were simulated at 9, 3 and 1 km resolutions for 36 h each. Validation against tower observations and radiosoundings showed fairly good agreement, although a systematic warm and moist bias and slightly overestimated wind speeds were found close to the surface. The spatial variability within a fjord was large and it often reached levels comparable to the temporal variability. The spatial variability of the surface fluxes of sensible and latent heat was mostly controlled by the air and sea surface temperatures instead of wind speed. The same cases were also simulated without any topography over Svalbard. The topography increased the spatial variability but the influence on the mean values was not systematic, except that a clear warming effect was seen in all the fjords studied. The role of surface type increased with increasing air—sea temperature difference and was dominating over topographic effects for the air temperature, specific humidity and turbulent heat fluxes.

How to Cite: Kilpeläinen, T., Vihma, T. and Ólafsson, H., 2011. Modelling of spatial variability and topographic effects over Arctic fjords in Svalbard. Tellus A: Dynamic Meteorology and Oceanography, 63(2), pp.223–237. DOI: http://doi.org/10.1111/j.1600-0870.2010.00481.x
1
Views
35
Citations
  Published on 01 Jan 2011
 Accepted on 21 Jul 2010            Submitted on 18 Jan 2010

References

  1. Andreas , E. L . 1987 . Theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice . Boundary-Layer MeteoroL 38 , 159 – 184 .  

  2. Argentini , S. , Viola , A. R , Mastrantonio , G. , Maurizi , A. , Georgiadis , T. and co-authors . 2003 . Characteristics of the boundary layer at Ny-Alesund in the Arctic during the ARTIST field experiment. Ann. Geophys . 46 , 185 - 196 .  

  3. Barry , R. G . 2008 . Mountain Weather and Climate . Cambridge Univer-sity Press , Cambridge , 506 pp .  

  4. Bromwich , D. H. , Hines , K. M. and Bai , L.-S . 2009 . Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean . J. Geophys. Res . 114 ( D08122 ), https://doi.org/10.1029/2008JD010300 .  

  5. Brümmer , B. , Schröder , D. , Launiainen , J. , Vihma , T. , Smedman , A.-S. and co-authors . 2002 . Temporal and spatial variability of surface fluxes over the ice edge zone in the northern Baltic Sea. J. Geophys. Res . 107 ( C8 ), https://doi.org/10.1029/2001JC000884 .  

  6. Chen , F. and Dudhia , J . 2001 . Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon . Wea. Re v . 129 , 569 – 585 .  

  7. Chou , M.-D. and Suarez , M. J . 1994 . An efficient thermal infrared radiation parameterization for use in general circulation models . NASA Tech. Memo . 104606 , 3 , 85 pp .  

  8. Curry , J. A. , Schramm , J. L. , Alam , A. , Reeder , R. and Arbet-ter , T. E . 2002 . Evaluation of data sets used to force sea ice models in the Arctic Ocean . J. Geophys. Res . 107 ( C10 ), 8027 , https://doi.org/10.1029/2000JC000466 .  

  9. Fairall , C. W. and Marlcson , R . 1987 . Mesoscale variations in surface stress, heat fluxes, and drag coefficient in the marginal ice zone during the 1983 Marginal Ice Zone Experiment . J. Geophys. Res . 92 ( C7 ), 6921 – 6932 .  

  10. Grell , G. A. and Devenyi , D . 2002 . A generalized approach to parameterizing convection combining ensemble and data assimilation techniques . Geophys. Res. Lett . 29 ( 14 ), 1693 , https://doi.org/10.1029/2002GL015311 .  

  11. Heinemann , G. and Klein , T . 2002 . Modelling and observations of the lcatabatic flow dynamics over Greenland . Tellus 54A , 542 – 554 .  

  12. Heinemann , G . 2003 . Forcing and feedback mechanisms between the lcatabatic wind and sea ice in the coastal areas of polar ice sheets. J . Atmos. Ocean Sc i . 9 , 169 – 201 .  

  13. Hines , K. M. and Bromwich , D. H . 2008 . Development and testing of Polar Weather Research and Forecasting (VVRF) model. Part I: Greenland ice sheet meteorology. Mon . Wea. Re v . 136 , 1971 – 1989 .  

  14. Holtslag , A. A. M. and de Bruin H. A. R . 1988 . Applied surface energy balance over land . J. AppL MeteoroL 27 , 689 – 704 .  

  15. Hong , S.-Y. , Dudhia , J. and Chen , S.-H . 2004 . A revised approach to ice microphysical processes for bulk parameterization of clouds and precipitation. Mon . Wea. Re v . 132 , 103 – 120 .  

  16. Högström , U . 1988 . Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation . Boundary-Layer Meteorol . 42 , 55 – 78 .  

  17. Hunt , J. C. R. , Shuns , G. J. and Derbyshire , S. H . 1996 . Stably stratified flows in meteorology . Dyn. Atmos. Oceans 23 , 63 – 79 .  

  18. Inoue , J. , Kawashima , M. , Fujiyoshi , Y. and Walcatsuchi , M . 2005 . Aircraft observations of air-mass modification over the Sea of Okhotsk during sea-ice growth . Boundary-Layer MeteoroL 117 , 111 – 129 .  

  19. Janjic , Z. I . 1996 . The surface layer in the NCEP Eta model. Eleventh Conference on Numerical Weather Prediction , Norfolf, VA, 19-23 August, Amer. Meteor. Soc., Boston, MA, 354 - 355 .  

  20. Janjic , Z. I . 2002 . Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model . NCEP Office Note , 437 , 61 pp .  

  21. Kilpeldinen , T. and Sjöblom , A . 2010 . Momentum and sensible heat exchange in an ice-free Arctic fjord . Boundary-Layer MeteoroL 134 , 109 – 130 , https://doi.org/10.1007/s10546-009-9435-x .  

  22. Klein , T. , Heinemann , G. and Gross , P . 2001 . Simulation of the lcatabatic flow near the Greenland ice margin using a high-resolution nonhy-drostatic model . MeteoroL Z . 10 , 331 – 339 .  

  23. Klein , T. and Heinemann , G . 2002 . Interaction of katabatic winds and mesocyclones at the eastern coast of Greenland . MeteoroL AppL 9 , 407 – 422 .  

  24. Launiainen , J. and Vihma , T . 1990 . Derivation of turbulent surface fluxes—an iterative flux-profile method allowing arbitrary observing heights . Environ. Software 5 ( 3 ), 113 – 124 .  

  25. Lüpkes , C. , Vihma , T. , Birnbaum , G. and Wacker , U . 2008 . Influ-ence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night . Geophys. Res. Lett . 35 ( L03805 ), https://doi.org/10.1029/2007GL032461 .  

  26. Lüpkes , C. , Vihma , T. , Jakobson , E. , König-Langlo , G. and Tetzlaff , A . 2010 . Meteorological observations from ship cruises during summer to the central Arctic: a comparison with reanalysis data . Geophys. Res. Lett . 37 ( L09810 ), https://doi.org/10.1029/2010GL042724 .  

  27. Mlawer , E. J. , Taubman , S. J. , Brown , B. D. , Iacono , M. J. and Clough , S. A . 1997 . Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave . J. Geophys. Res . 102 ( D14 ), 16663 – 16682 .  

  28. Molders , N. and Kramm , G . 2009 . A case study on winter-time inversions in Interior Alaska with WRF. Atmos. Res . 95 , https://doi.org/10.1016/j.atmosres.2009.06.002 .  

  29. Nawri , N. and Steward , R. E . 2009 . Short-term temporal variability of the atmospheric surface pressure and wind speed in the Canadian Arctic . Theor AppL ClimatoL 98 , 151 – 170 .  

  30. Ohigashi , T. and Moore , G. W. K . 2009 . Fine structure of a Greenland reverse tip jet: a numerical simulation . Tellus 61A , 512 – 526 .  

  31. Poulos , G. S. and Burns , S. P . 2003 . An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sc i . 60 , 2523 – 2537 .  

  32. Sandvik , A. D. and Furevilc , B. R . 2002 . Case study of a coastal jet at Spitsbergen — comparison of SAR-and model-estimated wind. Mon . Wea. Re v . 130 , 1040 – 1051 .  

  33. Skeie , P. and Gronhs , S . 2000 . Strongly stratified easterly flows across Spitsbergen . Tellus 52A , 473 – 486 .  

  34. Skamarock , W. C. , Klemp , J. B. , Dudhia , J. , Gill , D. O. , Barker , D. M. and co-authors. 2008. A description of the Advanced Research WRF version 3. NCAR Technical Note — 475±STR.  

  35. Skogseth , R. , Sandvilc , A. D. and Asplin , L . 2007 . Wind and tidal forcing on the meso-scale circulation in Storfjorden, Svalbard . Cont. Shelf Res . 27 , 208 – 227 .  

  36. Skogseth , R. , Smedsrud , L. H ., Nilsen , E and Fer , I. 2008. Observa-tions of hydrography and downflow of brine-enriched shelf water in the Storfjorden polynya, Svalbard. J. Geophys. Res . 113 ( C08049 ), https://doi.org/10.1029/2007JC004452 .  

  37. Tisler , P. , Vihma , T. , Muller , G. and Briimmer , B . 2008 . Modelling of warm-air advection over Arctic sea ice . Tellus 60A , 775 – 788 .  

  38. Tjernstriim , M. , Zagar , M. , Svensson , G. , Cassano , J. J. , Pfeifer , S. and co-authors . 2005 . Modelling the Arctic boundary layer: an evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Boundary-Layer MeteoroL 117 , 337 - 381 .  

  39. Valkonen , T. , Vihma , T. and Doble , M . 2008 . Mesoscale modeling of the atmosphere over Antarctic sea ice: a late autumn case study. Mon . Wea. Re v . 136 , 1457 – 1474 .  

  40. Valkonen , T. , Vihma , T. , Kirkwood , S. and Johansson , M. M . 2010 . Fine-scale model simulation of gravity waves generated by Basen nunatak in Antarctica . Tellus 62A , 319 – 332 , https://doi.org/10.1111/j.1600-0870.2010.00443.x .  

  41. Vihma , T. , Uotila , J. , Cheng , B. and Launiainen , J . 2002 . Surface heat budget over the Weddel Sea: buoy results and model comparison . J. Geophys. Res . 107 ( C2 ), 3013 , https://doi.org/10.1029/2000JC000372 .  

  42. Vihma , T. , Hartmann , J. and Liipkes , C . 2003 . A case study of an on-ice air flow over the Arctic marginal sea-ice zone . Boundary-Layer MeteoroL 107 , 189 – 217 .  

  43. Vihma , T. , Liipkes , C. , Hartmann , J. and Savijärvi , H . 2005 . Observations and modelling of cold-air advection over Arctic sea ice . Boundary-Layer MeteoroL 117 , 275 – 300 .  

  44. Vihma , T. , Jaagus , J. , Jakobson , E. and Palo , T . 2008 . Meteorologi-cal conditions in the Arctic Ocean in spring and summer 2007 as recorded on the drifting station Tara . Geophys. Res. Lett . 35 ( L18706 ), https://doi.org/10.1029/2008GL034681 .  

  45. Zhang , X. , Walsh , J. E. , Zhang , J. , Bhatt , U. S. and Ikeda , M . 2004 . Climatology and interannual variability of Arctic cyclone activity: 1948-2002 . J. Climate 17 , 2300 – 2317 .  

  46. Zilitinkevich , S. S. and Esau , I. N . 2005 . Resistance and heat-transfer laws for stable and neutral planetary boundary layers: old theory ad-vanced and re-evaluated . Quart. J. R. MeteoroL Soc . 131 , 1863 – 1892 .  

comments powered by Disqus