Start Submission Become a Reviewer

Reading: A new localization implementation scheme for ensemble data assimilation of non-local observa...

Download

A- A+
Alt. Display

Original Research Papers

A new localization implementation scheme for ensemble data assimilation of non-local observations

Authors:

Jiang Zhu,

LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, CN
X close

Fei Zheng ,

ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, CN
X close

Xichen Li

ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, CN
X close

Abstract

Localization technique is commonly used in ensemble data assimilation of small-size ensemble members. It effectively eliminates the spurious correlations of the background and increases the rank of the system. However, one disadvantage in current localization schemes is that it is difficult to implement the assimilation of non-local observations. In this paper, we test a new localized implementation scheme that can directly assimilate non-local observations without pinpointing them. A classical local support correlation function matrix is first sampled by a set of local correlation function ensemble members (the size is M). Then, the dynamical ensemble (the size is N) is combined with the local correlation function ensemble to form an N × M ensemble by multiplying each dynamical member with each local correlation function member using the Schur product. The covariance matrix constructed by the N×M members is proved to approximate the Schur product of the local support correlation matrix and the dynamical covariance matrix. This scheme is verified through assimilating both local and non-local observations with a linear advection model and an intermediate coupled model. The analysis results show that this scheme is feasible and effective in providing reasonable and high-quality analysis fields with a relatively small dynamical ensemble size.

How to Cite: Zhu, J., Zheng, F. and Li, X., 2011. A new localization implementation scheme for ensemble data assimilation of non-local observations. Tellus A: Dynamic Meteorology and Oceanography, 63(2), pp.244–255. DOI: http://doi.org/10.1111/j.1600-0870.2010.00486.x
11
Citations
  Published on 01 Jan 2011
 Accepted on 23 Apr 2010            Submitted on 18 Sep 2009

References

  1. Anderson , J. L . 2001 . An ensemble adjustment filter for data assimila-tion. Mon . Wea. Re v . 129 , 2884 – 2903 .  

  2. Anderson , J. L . 2007 . Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter . Physica D 230 , 99 – 111 .  

  3. Bishop , C. H. and Hodyss , D . 2007 . Flow adaptive moderation of spuri-ous ensemble correlations and its use in ensemble-based data assimi-lation . Quart. J. R. Meteor. Soc . 133 , 2029 – 2044 .  

  4. Bishop , C. H. and Hodyss , D . 2009a . Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models . Tellus 61A , 84 – 96 .  

  5. Bishop , C. H. and Hodyss , D . 2009b . Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere . Tellus 61A , 97 – 111 .  

  6. Buehner M. and Charron , M . 2007 . Spectral and spatial localization of background-error correlations for data assimilation . Quart. J. R. Meteor Soc . 133 , 615 – 630 .  

  7. Evensen , G . 2003 . The ensemble Kalman filter: theoretical formulation and practical implementation . Ocean Dyn . 53 , 343 – 367 .  

  8. Evensen , G . 2004 . Sampling strategies and square root analysis schemes for the EnKF . Ocean Dyn . 54 , 539 – 560 .  

  9. Evensen , G . 2007 . Data Assimilation—The Ensemble Kalman Filter . Springer , Berlin , 279 pp .  

  10. Fertig , E. J. , Hunt , B. R. , Ott , E. and Szunyogh , I . 2007 . Assimilating non-local observations with a local ensemble Kalman filter . Tellus 59A , 719 – 730 .  

  11. Gaspari , G. and Cohn , S. E . 1999 . Construction of correlation functions in two and three dimensions . Quart. J. R. Meteor Soc . 125 , 723 – 757 .  

  12. Hamill , T. M. , Whitaker , J. S. and Snyder , C . 2001 . Distance-dependent filtering of background-error covariance estimates in an ensemble Kalman filter. Mon . Wea. Re v . 129 , 2776 – 2790 .  

  13. Houtekamer , P. L. and Mitchell , H. L . 1998 . Data assimilation using an ensemble Kalman filter technique. Mon . Wea. Re v . 126 , 796 – 811 .  

  14. Houtekamer , P. L. and Mitchell , H. L . 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation. Mon . Wea. Re v . 129 , 123 – 137 .  

  15. Houtekamer , P. L. and Mitchell , H. L . 2005 . Ensemble Kalman filtering . Quart. J. R. Meteor Soc . 131 , 3269 – 3289 .  

  16. Keenlyside , N. and Kleeman , R . 2002 . Annual cycle of equato-rial zonal currents in the Pacific. J. Geophys. Res . 107 , https://doi.org/10.1029/2000JC0007111 .  

  17. Keppenne , C. L . 2000 . Data assimilation into a primitive equation model with a parallel ensemble Kalman filter. Mon . Wea. Re v . 128 , 1971 – 1981 .  

  18. Liu , C. , Xiao , Q. and Wang , B . 2009 . An ensemble-based four-dimensional variational data assimilation scheme. part Observing system simulation experiments with advanced research WRF (ARW). Mon . Wea. Re v . 137 , 1687 – 1704 .  

  19. McCreary , J. P . 1981 . A linear stratified ocean model of the equatorial undercurrent . Philos. Trans. R. Soc. (Lond .) 298 , 603 – 635 .  

  20. Oke , P. R. , Sakov , P. and Corney , S. P . 2007 . Impacts of localisation in the EnKF and EnOI: experiments with a small model . Ocean Dyn . 57 , 32 – 45 .  

  21. Ott , E. , Hunt , B. R. , Szunyogh , I. , Zimin , A.V. , Kostelich , E. J. and co-authors . 2004 . A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A , 415 - 428 .  

  22. Reynolds , R. W. , Rayner , N. A. , Smith , T. M. , Stokes , D. C. and Wang , W . 2002 . An improved in situ and satellite SST analysis for climate . J. Climate 15 , 1609 – 1625 .  

  23. Sakov , P. and Oke , P. R . 2008a . Implications of the form of the ensemble transformations in the ensemble square root filters. Mon . Wea. Re v . 136 , 1042 – 1053 .  

  24. Sakov , P. and Oke , P. R . 2008b . A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters . Tellus 60A , 361 – 371 .  

  25. Whitaker , J. S. , Compo , G. P. , Wei , X. and Hamill , T. M . 2004 . Reanal-ysis without Radiosondes Using Ensemble Data Assimilation. Mon . Wea. Re v . 132 , 1190 – 1200 .  

  26. Whitaker , J. S. and Hamill , T. M . 2002 . Ensemble data assimilation without perturbed observations. Mon . Wea. Re v . 130 , 1913 – 1924 .  

  27. Whitaker , J. S. , Hamill , T. M. and Wei , X . 2008 . Ensemble data assim-ilation with the NCEP Global Forecast System. Mon . Wea. Re v . 136 , 463 – 482 .  

  28. Zhang , R.-H. , Zebiak , S. E. , Kleeman , R. and Keenlyside , N . 2005 . Ret-rospective El Nino forecast using an improved intermediate coupled model. Mon . Wea. Re v . 133 , 2777 – 2802 .  

  29. Zheng , F. and Zhu , J . 2008 . Balanced multivariate model error in the ensemble lcalman filter data assimilation for an intermediate coupled model. J. Geophys. Res . C113, C07002, https://doi.org/10.1029/2007JC004621 .  

  30. Zheng , F. , Zhu , J. , Wang , H. and Zhang , R.-H . 2009 . Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv . Atmos. Sc i . 26 , 359 – 372 .  

  31. Zheng , F. , Zhu , J. , Zhang , R.-H. and Thou , G. Q . 2006 . Ensemble hindcasts of SST anomalies in the tropical Pacific using an in-termediate coupled model . Geophys. Res. Lett . 33 , L19604 , https://doi.org/10.1029/2006GL026994 .  

  32. Zheng , F. , Thu , J. and Zhang , R.-H . 2007 . The impact of altimetry data on ENSO ensemble initializations and predictions . Geophys. Res. Lett . 34 , L13611 , https://doi.org/10.1029/2007GL030451 .  

comments powered by Disqus