Start Submission Become a Reviewer

Reading: Zonally propagating wave solutions of Laplace Tidal Equations in a baroclinic ocean of an aq...

Download

A- A+
Alt. Display

Original Research Papers

Zonally propagating wave solutions of Laplace Tidal Equations in a baroclinic ocean of an aqua-planet

Authors:

Yair De-Leon,

Fredy and Nadine Herrmann Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, IL
X close

Nathan Paldor

Fredy and Nadine Herrmann Institute of Earth Sciences, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, IL
X close

Abstract

Despite the accurate formulation of Laplace’s Tidal Equations (LTE) nearly 250 years ago, analytic solutions of these equations on a spherical planet that yield explicit expressions for the dispersion relations of wave solutions have been found only for slowly rotating planets, so these solutions are of no relevance to Earth. Analytic solutions of the LTE in a symmetric equatorial channel on a rotating sphere were recently obtained by approximating the LTE by a Schrödinger equation whose energy levels yield the dispersion relations of zonally propagating waves and whose eigenfunctions determine the meridional structure of the amplitude of these waves. A similar approximation of the LTE on a sphere (with no channel walls) by a Schrödinger equation yields accurate analytic solutions for zonally propagating waves in the parameter range relevant to a baroclinic ocean, where the ratio between the radius of deformation and Earth’s radius is small. For sufficiently low (meridional) modes the amplitudes of the solutions vanish at some extra-tropical latitudes but this is not assumed abinitio. These newly found solutions do not restrict the value of the zonal wavenumber to be smaller than the meridional wavenumber as is the case in previous theories on a slowly rotating sphere.

How to Cite: De-Leon, Y. and Paldor, N., 2011. Zonally propagating wave solutions of Laplace Tidal Equations in a baroclinic ocean of an aqua-planet. Tellus A: Dynamic Meteorology and Oceanography, 63(2), pp.348–353. DOI: http://doi.org/10.1111/j.1600-0870.2010.00490.x
13
Citations
  Published on 01 Jan 2011
 Accepted on 20 Oct 2010            Submitted on 5 Sep 2009

References

  1. Cane , M.A. and Sarachilc , ES . 1979 . Forced baroclinic ocean motions III: the linear equatorial basin case . J. Mar Res . 37 , 355 – 398 .  

  2. Cartwright , D.E . 1999 . Tides: A Scientific History . Cambridge University Press , Cambridge , UK , 292 pp .  

  3. Chapman , S. and Lindzen , R.S . 1970 . Atmospheric Tides: Thermal and Gravitational . D. Reidel Publishing Company , Dordrecht , Holland , 200 pp .  

  4. De-Leon , Y. and Paldor , N . 2009 . Linear waves in mid-latitudes on the rotating spherical Earth . J. Phys. Oceanogr 39 ( 12 ), 3204 – 3215 .  

  5. De-Leon , Y. , Erlick , C. and Paldor , N . 2010 . The eigenvalue equations of equatorial waves on a sphere . Tellus 62A , 62 – 70 .  

  6. Erlick , C. , Paldor , N. and Ziv , B . 2007 . Linear waves in a symmetric equatorial channel . Q. J. Roy. MeteoroL Soc . 133 ( 624 ), 571 – 577 .  

  7. Finocchiaro , M.A . 1989 . The Galileo Affair: A Documentary History . University of California Press , Berkeley , 382 pp .  

  8. Hough , S.S . 1898 . On the application of harmonic analysis to the dynamical theory of the tides. Part 11. On the general integration of Laplace’s dynamical equations. Phil. Trans. Roy. Soc. Lond ., A 191 , 139 – 185 .  

  9. Longuet-Higgins , M.S . 1968 . The eigenfunctions of Laplace’s tidal equations over a sphere . Phil. Trans. Roy. Soc. Lond . A262 , 511 – 607 .  

  10. Margules , M . 1893 . Luftbewegungen in einer rotierenden Sphdroidschale. Sitzungsberichte der Kaiserliche Akad . Wiss. Wien, HA , 102 , 11 – 56 .  

  11. Matsuno , T . 1966 . Quasi-geostrophic motions in the equatorial area . J. MeteoroL Soc. Japan ., 44 , 25 – 43 .  

  12. Paldor , N. and Sigalov , A . 2008 . Trapped waves in mid-latitudes on the fl-plane . Tellus 60A , 742 – 748 .  

  13. Paldor , N. , Rubin , S. and Mariano , A.J . 2007 . A consistent theory for linear waves of the Shallow Water Equations on a rotating plane in mid-latitudes . J. Phys. Oceanogr ., 37 ( 1 ), 115 – 128 .  

  14. Sakurai , J.J . 1994 . Modern Quantum Mechanics . Revised edition. Ad-dison Wesley , New York , 500 pp .  

comments powered by Disqus