Start Submission Become a Reviewer

Reading: Short-range probabilistic forecasts from the Norwegian limited-area EPS: long-term validatio...

Download

A- A+
Alt. Display

Original Research Papers

Short-range probabilistic forecasts from the Norwegian limited-area EPS: long-term validation and a polar low study

Authors:

Trygve Aspelien ,

Norwegian Meteorological Institute, PO Box 43 Blindern, NO-0313 Oslo, NO
X close

Trond Iversen,

Norwegian Meteorological Institute, PO Box 43 Blindern, NO-0313 Oslo; University of Oslo, Dep. Geosciences, PO Box 1072 Blindern, NO-0316 Oslo, NO
X close

John Bjørnar Bremnes,

Norwegian Meteorological Institute, PO Box 43 Blindern, NO-0313 Oslo, NO
X close

Inger-Lise Frogner

Norwegian Meteorological Institute, PO Box 43 Blindern, NO-0313 Oslo, NO
X close

Abstract

NORLAMEPS is a 42 member short-range EPS run operationally at met.no since February 2005. It combines TEPS, a 21 member version of ECMWF’s EPS with perturbations targeted to Northern Europe, and a HIRLAM-based 21 member LAMEPS, and includes two control forecasts. NORLAMEPS has been upgraded extensively since 2005, including extensions for the IPY-THORPEX project. For a range of investigated weather parameters up to 60 h lead times, NORLAMEPS provides better probabilistic forecasts than ECMWF’s 51 member EPS. Combining LAMEPS with TEPS is valuable when high spatial resolution is not crucial, that is, for precipitation except in summer and wind except during autumn and early winter. The IPY-THORPEX field campaign produced additional observations for two polar lows in March 2008. The impact of those observations is studied with the 21 member LAMEPS. For the first polar low a significant positive impact is found, and for long lead times in particular. For the more complex and the operationally poorer forecasted second polar low, the impact of extra observations was positive only in the first stage of the development. Later, for the more intense part of this polar low, slightly better results were actually achieved without the extra observations.

How to Cite: Aspelien, T., Iversen, T., Bremnes, J.B. and Frogner, I.-L., 2011. Short-range probabilistic forecasts from the Norwegian limited-area EPS: long-term validation and a polar low study. Tellus A: Dynamic Meteorology and Oceanography, 63(3), pp.564–584. DOI: http://doi.org/10.1111/j.1600-0870.2010.00502.x
15
Citations
  Published on 01 Jan 2011
 Accepted on 10 Dec 2010            Submitted on 13 Aug 2010

References

  1. Bishop , C. H. , Etherton , B. J. and Majundar , S. J . 2001 . Adaptive sam-pling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon . Wea.Re v . 129 , 420 – 436 .  

  2. Boer , G. J . 2003 . Predictability as a function of scale . Atmos-Ocean 41 , 203 – 215 .  

  3. Bojarova , J. , Gustafsson , N. , Johansson , A. and Vignes , O. N. 2011 . The ETKF resealing scheme in HIRLAM. Tellus 63A , this issue .  

  4. Bowler , N. E . 2006 . Comparison of error breeding, singular vectors, ran-dom perturbations and ensemble Kalman filter perturbation strategies on a simple model . Tellus 58A , 538 – 548 .  

  5. Bowler , N. E . 2006 . Explicitily accounting for observation error in categorical verification of forecasts. Mon . Wea. Re v . 134 , 1600 – 1606 .  

  6. Bowler , N. E. , Arribas , A. and Mylne , K. R . 2008 . The MOGREPS ensemble prediction system . Q.J.R. Meteorol. Soc . 134 , 703 – 722 .  

  7. Bowler , N. E. and Mylne , K. R . 2009 . Ensemble transform Kalman filter perturbations for a regional ensemble prediction system . Q.J.R. Meteorol. Soc . 135 , 757 – 766 .  

  8. Bratseth , A. M . 1985 . A note on CISK in polar air masses . Tellus 37A , 403 – 406 .  

  9. Buizza , R . 1994 . Localization of optimal perturbations using a projection operator . Q.J.R. Meteorol. Soc . 120 , 1647 – 1681 .  

  10. Buizza , R. and Palmer , T. N . 1995 . The Singular-Vector Structure of the Atmospheric Global Circulation. J. Atmos. Sc i . 52 , 1434 – 1456 .  

  11. Buizza , R. , Tribbia , J ., Molteni , E and Palmer , T. 1993. Computation of optimal unstable structures for a numerical weather prediction model. Tellus 45A , 388 - 407 .  

  12. Buizza , R. , Miller , M. and Palmer , T. N . 1999 . Stochastic representation of model uncertainties in the ECMWF ensemble prediction system . Q.J.R. Meteorol. Soc . 125 , 2887 – 2908 .  

  13. Calvo , J . 2007 . Kain-Fritsch convection in HIRLAM. Present status and prospects. HIRLAIVI newsletter 52 , 57 - 64 Available at: http://hirlam.org/index.php?option=com_content&view=artiele&id=64&Itemid=101 .  

  14. Du , J. , Mullen , S. L. and Sanders , F . 1997 . Short-range ensem-ble forecasting of quantitive precipitation. Mon . Weather Re v . 125 , 2427 – 2459 .  

  15. Du , J. , DiMego , G. , Tracton , M. S. and Thou , B . 2003 . NCEP short-range ensemble forecasting (SREF) system: multi-IC, multi-model and multi-physics approach. Research Activi-ties in Atmospheric and Oceanic Modelling Ed: J. Cote , Re-port 33, CAS/JSC Working Group Numerical Experimenta-tion (VVGNE), WMO/T’D-No. 1161, 5.09-5.10. Available at: http://www.eme.neep.noaa.gov/mmb/SREF/srefVVM0_2003.pdf .  

  16. Emanuel , K. A. and Rotunno , R . 1989 . Polar lows as arctic hurricanes . Tellus 49A , 1 – 17 .  

  17. Ferro, C. AT. , Richardson , D. S. and Weigel , A. P . 2008 . On the effect of ensemble size on the discrete and continuous ranked probability scores . Metorol. AppL 15 , 19 – 24 .  

  18. Frogner , I.-L. and Iversen , T . 2001 . Targeted ensemble prediction for northern Europe and parts of the North Atlantic Ocean . Taus 53A , 35 – 55 .  

  19. Frogner , I.-L. and Iversen , T . 2002 . High-resolution limited area en-semble predictions based on low-resolution targeted singular vectors . Q.J.R. Meteorol. Soc . 128 , 1321 – 1341 .  

  20. Frogner , I.-L. and Iversen , T . 2011 . EuroTEPS - A targeted version of ECMWF EPS for the European area. Tellus 63A , this issue .  

  21. Frogner , I.-L. , Haakenstad , H. and Iversen , T . 2006 . Limited-area en-semble predictions at the Norwegian Meteorolgical Institute . Q.J.R. MetoroL Soc . 132 , 2785 – 2808 .  

  22. Garcia-Moya , J. A. , Callado , A. , Santos , C. , Santos , D. and Simarro , J . 2007 . Multi-model ensemble for short-range predictability. 3rd International Verification Methods Workshop, ECMWF, Reading, UK .  

  23. Gustafsson , N. , Berre , L. , Hörnquist , S. , Huang , X.-Y. , Lindskog , M. and co-authors . 2001 . Three-dimensional variational data assimilation for a limited area model. Part I: general formulation and the background error constraint. Tellus 53A , 425 - 446 .  

  24. Hagedorn , R. , Doblas-Reyes , E J. and Palmer , T. N . 2005 . The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: basic concepts . Tellus 57A , 219 – 233 .  

  25. Hamill , T. M. and Colucci , S. J . 1997 . Verification of eta-RSM short-range forecasts. Mon . Weather Re v . 125 , 1312 – 1327 .  

  26. Hersbach , H . 2000 . Decomposition of the Continuous Ranked Probabil-ity Score for Ensemble Prediction Systems . Am. Meteorol. Soc . 15 , 559 – 570 .  

  27. Ivarsson , K.-I . 2007 . The Rasch Kristjansson large scale con-densation. Present status and prospects. HIRLAIVI Newslett . 52 , 50 - 56 Available at: http://hirlam.org/index.php?option=com_content&view=artiele&id=64&Itemid=101 .  

  28. Iversen , T. , Bremnes , J. B. , Santos , C. , Deckmyn , A. , Feddersen , H. and co-authors . 2011 . A grand LAM-EPS (GLAMEPS) for operational use. Tellus 63A , this issue .  

  29. Jensen , M. H. , Frogner , I-L. , Iversen , T. and Vignes , O. N. 2006 . Limited area ensemble forecasting in Norway using targeted EPS. ECMWF Newslett . 107 , 23 - 29 .  

  30. Joliffe , I. T. and Stephenson , D. B . 2003 . In: Forecast Verification: A Practitioner’s Guide in Atmospheric Science , John Wiley and Sons, Chichester.  

  31. Kain , J. S . 2004 . The Kain-Fritsch Convective Parameterization. An Update . J. AppL Meteor 43 , 170 – 181 .  

  32. Kolstad , E. W . 2006 . A new climatology of favourable conditions for reverse-shear polar lows . Tellus 58A , 344 – 354 .  

  33. Kolstad , E. W. and Bracegirdle , T. J . 2008 . Marine cold-air outbreaks in the future: an assesment of IPCC AR4 model results for the Northern Hemisphere . Clim. Dyn . 30 , 871 – 885 .  

  34. Kristiansen , J. , Sorland , S. L. , Iversen , T. , Bjorge , D. and Koltzow , M.O . 2011 . High-resolution ensemble prediction of a polar low de-velopment. Tellus 63A , this issue .  

  35. Kristjánsson , J.-E. , Barstad , I ., Hov , O. , Irvine , E. , Iversen , T. and co-authors . 2010. The Norwegian IPY-THORPEX: improved forecasting of adverse weather in the Arctic. Bull. Am. Meteorol. Soc ., submitted .  

  36. Linders , T. and Swtra , O. 2010 . Can Cape Maintain Polar Lows?. J. Atmos. Sci . 67 ( 8 ), 2559 - 2571 https://doi.org/10.1175/2010JAS3131.1 .  

  37. Lindskog , M. , Gustafsson , N. , Navascues , B. , Mogensen , K. S. , Huang , X.-Y. and co-authors . 2001 . Three-dimensional variational data as-similation for a limited area model. Part II: observation handling and assimilation experiments. Tellus 53A , 447 - 468 .  

  38. Lorenz , E. N . 1982 . Atmospheric predictability experiments with a large numerical model . Tellus 34 , 505 – 513 .  

  39. Mann , H. B. and Whitney , D. R . 1947 . On a test of whether one of two random variables is stochastically larger than the other . Ann. Math. Stat . 18 , 50 – 60 .  

  40. Marsigli , C. , Montani , A. , Nerozzi , F. , Paccagnella , T. , Tibaldi , S. and co-authors . 2001. A strategy for high-resolution ensemble prediction. II: limited-area experiments on four Alpine flood events. Q.J.R. Meteorol. Soc . 127 , 2095-211 5 .  

  41. Marsigli , C. , Boccanera , F. , Montani , A. and Paccagnella , T . 2005 . The COSMO-LEPS mesoscale ensemble prediction system: validation of the methodology and verification . Nonlinear Processes in Geophysics 12 , 527 – 536 .  

  42. Mason , I . 1982 . A model for assesment of weather forecasts . Austr Meteorol. Mag . 30 , 2069 – 2094 .  

  43. Molteni , F. , Buizza , R. , Palmer , T. N. and Petroliagis , T . 1996 . The ECMWF ensemble prediction system: methodology and validation . Q.J.R. Meteorol. Soc . 122 , 73 – 119 .  

  44. Molteni , F. , Buizza , R. , Marsigli , C. , Montani , A. , Nerozzi , F. and co-authors . 2001. A strategy for high-resolution ensemble prediction I: definition of representative members and global-model experiments. Q.J.R. Meteorol. Soc . 127 , 2013-203 3 .  

  45. Montgomery , M. T. and Farrell , B. F . 1992 . Polar Low Dynamics. J. Atmos. Sc i . 49 , 2484 – 2505 .  

  46. Mullen , S. L. and Buizza , R . 2002 . The impact of horizontal resolution and ensemble size on probabilistic forecasts of precipitation by the ECMWF Ensemble Prediction System . Weather and Forecasting 17 , 173 – 191 .  

  47. Okland , H . 1977 . On the intensification of small-scale cyclones formed in very cold air masses heated by the ocean . Institute Report Series 26 , University of Oslo , Department of Geophysics .  

  48. Rabbe , A . 1975 . Arctic instability lows . Meteorologiske Annaler 6 , 303 – 329 .  

  49. Rasch , P. J. and Kristjánsson , J. E . 1998 . A comparison of the CCM3 model climate using diagnosed and predicted condensate parameter-izations . J. Climate 11 , 1587 – 1614 .  

  50. Rasmussen , E. A. and Turner , J . 2003 . In: Polar Lows: Mesoscale Weather Systems in the Polar Regions , Cambridge University Press , Cambridge.  

  51. Swtra , O. , Hersbach , H. , Bidlot , J-R. and Richardson , D. S. 2004. Ef-fects of observation errors on the statistics for ensemble spread and reliability. Mon. Wea. Rev . 132 , 1487 - 1501 .  

  52. Simmons , A. and Hollingsworth , A . 2002 . Some aspects of the improve-ments in skill of numerical weather prediction . Q.J.R. Meteorol. Soc . 128 , 647 – 677 .  

  53. Stensrud , D. J. , Brooks , H. E. , Du , J. , Tracton , M. S. and Rogers , E . 1999 . Using ensembles for short-range forecasting. Mon . Weather Re v . 127 , 433 – 446 .  

  54. Toth , Z. and Kalnay , E . 1993 . Ensemble forecasting at NMC: the generation of perturbations . Bull. Am. Meteorol. Soc . 74 , 2317 – 2330 .  

  55. Toth , Z. and Kalnay , E . 1997 . Ensemble forecasting at NCEP and the breeding method. Mon . Wea. Re v 125 , 3297 – 3319 .  

  56. Unden , R , Rontu , L. , Järvinen , H. , Lynch , P. , Calvo , J. and co-authors . 2002 . HIRLAM-5 Scientific Documentation HIRLAM-5 Project. Available from SMHI, S-601 767Norrkoping, Sweden.  

  57. Walser , A. , Liithi , D. and Schär , C . 2004 . Predictability of precipitation in a cloud-resolving model. Mon . Weather Re v . 132 , 560 – 577 .  

  58. Weigel , A. P. , Liniger , M. A. and Appenzeller , C . 2008 . Can multi-model combination really enhance the prediction skill of prob-abilistic ensemble forecasts? . Q.J.R. Meteorol. Soc . 134 , 241 – 260 .  

  59. Weigel , A. P. and Bowler , N. E . 2009 . Comment on ‘Can multi-model combination really enhance the prediction skill of prob-abilistic ensemble forecasts?’ . Q.J.R. Meteorol. Soc . 135 , 535 – 539 .  

  60. Yanase , W. and Niino , H . 2005 . Effects of baroclinicity on the cloud pattern and structure of polar lows: a high-resolution numerical exper-iment . Geophys. Res. Lett . 32 , L02806 , https://doi.org/10.1029/2004GL020469 .  

  61. Yue , S. and Wang , C.-Y . 2002 . The influence of serial correlation in the Mann-Whitney test for detecting a shift in median . Adv. Water Res . 25 , 325 – 333 .  

comments powered by Disqus