Start Submission Become a Reviewer

Reading: Ensemble prediction for nowcasting with a convection-permitting model—I: description of the ...

Download

A- A+
Alt. Display

Original Research Papers

Ensemble prediction for nowcasting with a convection-permitting model—I: description of the system and the impact of radar-derived surface precipitation rates

Authors:

Stefano Migliorini ,

Department of Meteorology, University of Reading, Reading RG6 6BB, GB
X close

Mark Dixon,

Joint Centre for Mesoscale Meteorology, Met Office, Reading, GB
X close

Ross Bannister,

Department of Meteorology, University of Reading, Reading RG6 6BB, GB
X close

Sue Ballard

Joint Centre for Mesoscale Meteorology, Met Office, Reading, GB
X close

Abstract

A key strategy to improve the skill of quantitative predictions of precipitation, as well as hazardous weather such as severe thunderstorms and flash floods is to exploit the use of observations of convective activity (e.g. from radar). In this paper, a convection-permitting ensemble prediction system (EPS) aimed at addressing the problems of forecasting localized weather events with relatively short predictability time scale and based on a 1.5 km grid-length version of the Met Office Unified Model is presented. Particular attention is given to the impact of using predicted observations of radar-derived precipitation intensity in the ensemble transform Kalman filter (ETKF) used within the EPS. Our initial results based on the use of a 24-member ensemble of forecasts for two summer case studies show that the convectivescale EPS produces fairly reliable forecasts of temperature, horizontal winds and relative humidity at 1 h lead time, as evident from the inspection of rank histograms. On the other hand, the rank histograms seem also to show that the EPS generates too much spread for forecasts of (i) surface pressure and (ii) surface precipitation intensity. These may indicate that for (i) the value of surface pressure observation error standard deviation used to generate surface pressure rank histograms is too large and for (ii) may be the result of non-Gaussian precipitation observation errors. However, further investigations are needed to better understand these findings. Finally, the inclusion of predicted observations of precipitation from radar in the 24-member EPS considered in this paper does not seem to improve the 1-h lead time forecast skill.

How to Cite: Migliorini, S., Dixon, M., Bannister, R. and Ballard, S., 2011. Ensemble prediction for nowcasting with a convection-permitting model—I: description of the system and the impact of radar-derived surface precipitation rates. Tellus A: Dynamic Meteorology and Oceanography, 63(3), pp.468–496. DOI: http://doi.org/10.1111/j.1600-0870.2010.00503.x
  Published on 01 Jan 2011
 Accepted on 13 Dec 2010            Submitted on 14 Apr 2010

References

  1. Bannister , R. , Migliorini , S. and Dixon , M . 2011 . Ensemble prediction with a convection-permitting model for nowcasting. Part II: Forecast error statistics. Tel/us 63A , this issue .  

  2. Bloom , S. , Takacs , L. , da Silva , A. and Ledvina , D . 1996 . Data as-similation using incremental analysis updates. Mon . Wea. Re v . 124 , 1256 – 1271 .  

  3. Bowler , N. E. , Arribas , A. , Mylne , K. R. , Robertson , K. B. and Beare , S. E . 2008 . The MOGREPS short-range ensemble prediction system . Quart. J. Roy. Meteor Soc . 134 , 703 – 722 .  

  4. Clark , P . 2009 . Limited area modelling in CRM mode. In: Proceedings of the ECMWF Seminar on Parametrization of Subgrid Physical Processes . ECMWF, 165-192. Available at: http://www.ecmwf.int/publications/.  

  5. Davies , T. , Cullen , M. J. P. , Malcolm , A. J. , Mawson , M. H. , Stani-forth , A. , and co-authors . 2005 . A new dynamical core for the Met Office’s global and regional modelling of the atmosphere . Quart. J. Roy. Meteor Soc . 131 , 1759– 1782 .  

  6. Dixon , M. , Li , Z. , Lean , H. , Roberts , N. and Ballard , S . 2009 . Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon . Wea. Re v . 137 , 1562 – 1584 .  

  7. Done , J. M. , Craig , G. C. , Gray , S. L. , Clark , P. A. and Gray , M. E. B . 2006 . Mesoscale simulations of organized convection: importance of convective equilibrium . Quart. J. Roy. Meteor Soc . 132 , 737 – 756 .  

  8. Fritsch , J. M. and Carbone , R. R . 2004 . Improving quantitative precipi-tation forecasts in the warm season: a USWRP research and develop-ment strategy . Bull. Amer Meteor. Soc . 85 , 955 – 965 .  

  9. Gilmore , M. S. , Straka , J. M. and Rasmussen , E. N . 2004 . Precipi-tation uncertainty due to variations in precipitation particle param-eters within a simple microphysics scheme. Mon . Wea. Re v . 132 , 2610 – 2627 .  

  10. Golding , B. W . 1998 . Nimrod: a system for generating automated very short range forecasts . Meteor Appl . 5 , 1 – 16 .  

  11. Hamill , T. M . 2001 . Interpretation of rank histograms for verifying ensemble forecasts. Mon . Wea. Re v . 129 , 550 – 560 .  

  12. Harrison , D. L. , Driscoll , S. J. and Kitchen , M . 2000 . Improving precip-itation estimates from weather radar using quality control and correc-tion techniques . Meteor. AppL 7 , 135 – 144 .  

  13. Hohenegger , C. and Schär , C . 2007 . Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sc i . 64 , 4467 – 4478 .  

  14. Jones , C. D. and Macpherson , B . 1997 . A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model . Meteor. AppL 4 , 269 – 277 .  

  15. Koizumi , K. , Ishilcawa , Y. and Tsuyulci , T . 2005 . Assimilation of pre-cipitation data to the JMA mesoscale model with a four-dimensional variational method and its impact on precipitation forecasts . SOLA 1 , 45 – 48 .  

  16. Lean , H. W. , Clark , P. A. , Dixon , M. , Roberts , N. M. , Fitch , A. and co-authors . 2008 . The Met. Office global three-dimensional variational data assimilation scheme . Quart. J. Roy. Meteor Soc . 131 , 1759– 1782 .  

  17. Lilly , D. K . 1990 . Numerical prediction of thunderstorms-has its time come? Quart. J. Roy. Meteor Soc . 116 , 779 – 798 .  

  18. Lorene , A. C. , Ballard , S. P. , Bell , R. S. , Ingleby , N. B. , Andrews , P. L . E and co-authors. 2000. Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev . 136 , 3408-342 4 .  

  19. Macpherson , B. , Wright , B. J. , Hand , W. H. and Maycock , A. J . 1996 . The impact of MOPS moisture data in the U.K. Meteorological Office Mesoscale Data Assimilation Scheme. Mon . Wea. Re v . 124 , 1746 – 1766 .  

  20. Mass , C. F. , Ovens , D. , Westrick , K. and Colle , B. A . 2002 . Does in-creasing horizontal resolution produce more skilful forecasts? Bull. Amer Meteor. Soc . 83 , 407 – 430 .  

  21. Page , C. , Fillion , L. and Zwack , P . 2007 . Diagnosing summertime mesoscale vertical motion: implications for atmospheric data assimi-lation. Mon . Wea. Re v . 135 , 2076 – 2094 .  

  22. Park , S. K. and Droegemeier , K. K . 2000 . Sensitivity analysis of a 3D convective storm: implications for variational data assimilation and forecast error. Mon . Wea. Re v . 128 , 140 – 159 .  

  23. Pires , C. A ., Talagrand, 0. and Bocquet, M 2010. Diagnosis and im-pacts of non-Gaussianity of innovations in data assimilation . Phys. D: Nonlinear Phenom . 239 , 1701– 1717 .  

  24. Sakov , P. and Oke , P. R . 2008 . Implications of the form of the ensemble transformation in the ensemble square root filters. Mon . Wea. Re v . 136 , 1042 – 1053 .  

  25. Stensrud , D. J. , Xue , M. , Wicker , L. J. , Kelleher , K. E. , Foster , M. P. and co-authors . 2009. Convective-scale warn-on-forecast system. Bull. Amer. Meteor Soc . 90 , 1487-149 9 .  

  26. Sun , J . 2005 . Convective-scale assimilation of radar data: progress and challenges . Quart. J. Roy. Meteor Soc . 131 , 3439 – 3463 .  

  27. Talagrand , O. , Vautard , R. and Strauss , B. 1997. Evaluation of proba-bilistic prediction systems. In: Proceedings, ECMWF Workshop on Predictability , Shinfield Park, Reading, UK , 1 - 25 .  

  28. Tong , M. and Xue , M . 2008 . Simultaneous estimation of microphysi-cal parameters and atmospheric state with radar data and ensemble Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon . Wea. Re v . 136 , 1630 – 1648 .  

  29. Wang , X. and Bishop , C. H . 2003 . A comparison of breeding and en-semble transform Kalman filter ensemble forecast schemes. J. Atmos. Sc i 60 , 1140 – 1158 .  

  30. Wang , X. , Bishop , C. H. and Julier , S. J . 2004 . Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble?. Mon . Wea. Re v . 132 , 1590 – 1605 .  

  31. Wilks , D. S . 2006 . Statistical Methods in the Atmospheric Sciences , 2nd edition, Volume 59. International Geophysics Series. Academic Press.  

  32. Wilson , D. R. and Ballard , S. P . 1999 . A microphysically based pre-cipitation scheme for the UK Meteorological Office Unified Model . Quart. J. Roy. Meteor. Soc . 131 , 1607 – 1636 .  

comments powered by Disqus