Start Submission Become a Reviewer

Reading: Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting

Download

A- A+
Alt. Display

Original Research Papers

Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting

Authors:

Trond Iversen ,

Norwegian Meteorological Institute (met.no), Oslo, NO; ECMWF, Shinfield Park, RG2 9AX, GB
X close

Alex Deckmyn,

Royal Meteorological Institute (KMI), Brussels, BE
X close

Carlos Santos,

Spanish Meteorological Agency (AEMET), Madrid, ES
X close

Kai Sattler,

Danish Meteorological Institute (DMI), Copenhagen, DK
X close

John Bjørnar Bremnes,

Norwegian Meteorological Institute (met.no), Oslo, NO
X close

Henrik Feddersen,

Danish Meteorological Institute (DMI), Copenhagen, DK
X close

Inger-Lise Frogner

Norwegian Meteorological Institute (met.no), Oslo, NO
X close

Abstract

Grand Limited Area Model Ensemble Prediction System (GLAMEPS) is prepared for pan-European, short-range probabilistic numerical weather prediction of fine synoptic-scale, quasi-hydrostatic atmospheric flows. Four equally sized ensembles are combined: EuroTEPS, a version of the global ECMWF EPS with European target; AladEPS, a downscaling of EuroTEPS using the ALADIN model; HirEPS_K and HirEPS_S, two ensembles using the HIRLAM model nested into EuroTEPS including 3DVar data-assimilation for two control forecasts. A 52-member GLAMEPS thus samples forecast uncertainty by three analysed initial states combined with 12 singular vector-based perturbations, four different models and the stochastic physics tendencies in EuroTEPS. Over a 7-week test period in winter 2008, GLAMEPS produced better results than ECMWF’s EPS with 51 ensemble members. Apart from spatial resolution, the improvement is due to the multimodel combination and to a smaller extent the dedicated EuroTEPS. Ensemble resolution and reliability are both improved. Combining uncalibrated ensembles is seen to produce a better combined ensemble than the best single-model ensemble of the same size, except when one of the single-model ensembles is considerably better than the others. Bayesian Model Averaging improves reliability, but needs further elaboration to account for geographical variations. These conclusions need to be confirmed by long-period evaluations.

How to Cite: Iversen, T., Deckmyn, A., Santos, C., Sattler, K., Bremnes, J.B., Feddersen, H. and Frogner, I.-L., 2011. Evaluation of ‘GLAMEPS’—a proposed multimodel EPS for short range forecasting. Tellus A: Dynamic Meteorology and Oceanography, 63(3), pp.513–530. DOI: http://doi.org/10.1111/j.1600-0870.2010.00507.x
  Published on 01 Jan 2011
 Accepted on 10 Dec 2010            Submitted on 30 Apr 2010

References

  1. Anwender , D. , Jones , S. C. , Leutbecher , M. and Han , P. A . 2010 . Sensitivity experiments for ensemble forecasts of the extratropical transition of typhoon Tolcage 2004 . Q. J. R. Meteorol. Soc . 136 , 183 – 200 .  

  2. Aspelien , A. , Iversen , T. , Bremnes , J. B. and Frogner , I-L . 2011 . Short-range probabilistic forecasts from the Norwegian limited-area EPS. Long-term validation and a polar low study. Tellus 63A , this issue .  

  3. Bishop , C. H. , Etherton , B. J. and Majumdar , S. J . 2001 . Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon . Wea. Re v . 129 , 420 – 436 .  

  4. Bowler , N. E . 2006 . Explicitly accounting for observation error in cate-gorical verification of forecasts. Mon . Wea. Re v . 134 , 1600 – 1606 .  

  5. Bowler , N. E. , Arribas , A. , Mylne , K. R. , Robertson , K. B. and Beare S . 2008 . The MOGREPS short-range ensemble prediction system . Q. J. R. Meteorol. Soc . 134 ( 632 ), 703 – 722 . https://doi.org/10.1002/qj.234 .  

  6. Buizza , R . 1994 . Localization of optimal perturbations using a projection operator . Q. J. R. Meteorol Soc . 120 , 1647 – 1681 . https://doi.org/10.1002/qj.49712052010 .  

  7. Buizza , R. , Tribbia , J. , Molteni , F. and Palmer , T . 1993 . Computation of optimal unstable structures for a numerical weather prediction model . Tellus 45A , 388 – 407 .  

  8. Buizza , R. , Miller , M. and Palmer , T. N . 1999 . Stochastic representation of model uncertainties in the ECMWF ensemble prediction system . Q. J. R. Meteorol. Soc . 125 , 2887 – 2908 . https://doi.org/10.1256/smsqj.56005 .  

  9. Buizza , R. , Leutbecher , M. and Isaksen L . 2008 . Potential use of analyses in the ECMWF Ensemble Prediction System . Q.J.R. Meteorol. Soc . 134 ( 637 ), 2051 – 2066 . https://doi.org/10.1002/qj.346 .  

  10. Fjortoft , R . 1953 . On the change in the spectral distribution of kinetic energy for two dimensional, non-divergent flow . Tellus 5 , 225 – 230 .  

  11. Frogner , I.-L. and Iversen , T . 2001 . Targeted ensemble prediction for northern Europe and parts of the North Atlantic Ocean . Tellus 53A , 35 – 55 .  

  12. Frogner , I.-L. and Iversen , T . 2002 . High-resolution limited-area ensem-ble predictions base don low-resolution targeted singular vectors . Q. J. R. Meteorol. Soc . 128 , 1321 – 1341 .  

  13. Frogner , I.-L. , Haakenstad , H. and Iversen , T . 2006 . Limited-area en-semble predictions at the Norwegian Meteorological Institute . Q. J. R. Meteorol Soc . 132 , 2785 – 2808 . https://doi.org/10.1256/qj.04.178 .  

  14. Gebhardt , C , Theis , S. , Krahe , P. and Renner , V . 2008 . Experimental ensemble forecasts of precipitation based on a convection-resolving model . Atmos. Sci. Lett . 9 , 67 – 72 .  

  15. Hamill , T. M . 2001 . Interpretation of rank histograms for ver-ifying ensemble forecasts . Mon. Wea. Rev . 129 ( 3 ), 550 – 560 . https://doi.org/10.1175/1520-0493(2001)1292.0.00;2 .  

  16. Hamill , T. M. , Whitaker , J. S. and Wei , X ., 2004 . Ensemble refore-casting: Improving medium-range forecast skill using retrospective forecasts. Mon . Wea. Re v . 132 , 1434 – 1447 .  

  17. Hohenegger C. and Schär , C . 2007 . Atmospheric predictability at syn-optic versus cloud-resolving scales . Bull. Amer Meteor Soc . 88 ( 11 ), 1783 – 1793 . https://doi.org/10.1175/13AMS-88-11-1783 .  

  18. Iversen , T. , Decicmyn , A. , Santos , C. , Sattler , K. , Bremnes , J. B. and co-authors . 2011 . A grand LAM-EPS (GLAMEPS) for operational use. Tellus 63A , this issue .  

  19. Kristiansen , J. , Sorland , S. L. , Iversen , T. , Bjorge , D. and Koltzow , M. O. 2011 . High-resolution ensemble prediction of a polar low devel-opment. Tellus 63A , this issue .  

  20. Leutbecher , M . 2007 . On the representation of initial uncertainties with multiple sets of singular vectors optimized for different criteria . Q. J. R. Meteorol. Soc . 133 , 2045 – 2056 . https://doi.org/10.1002/qj.174 .  

  21. Lorenz , E. N . 1963 . Deterministic non-periodic flow. J. Atmos. Sc i . 20 , 130 – 141 .  

  22. Mafouf , J-F . 1999 . Influence of physical processes on the tangent linear-approximation . Tellus 51A : 147 – 166 .  

  23. Marsigli , C. , Boccanera , F. , Montani , A. and Paccagnella , T . 2005 . The COSMO-LEPS mesoscale ensemble prediction system: Validation of the methodology and verification . Nonlin. Process. Geophys . 12 , 527 – 536 .  

  24. Palmer , T. N. , Alessandri , A. , Andersen , U. , Cantelaube , R , Davey , M. and co-authors . 2004 . Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull. Amer MeteoroL Soc . 85 , 853 - 872 .  

  25. Palmer , T. N. and Williams , P. (eds.) 2010 , Stochastic Physics and Cli-mate Modeling . Cambridge University Press . UK . 480 .  

  26. Raftery , A. E. , Gneiting , T. , Balabdaoui , F. and Polalcowski , M . 2005 . Using Bayesian model averaging to calibrate forecast ensembles. Mon . Wea. Re v . 133 , 1155 – 1174 .  

  27. Swtra , O. , Hersbach , H. , Bidlot , J-R. and Richardson , D. S. 2004. Ef-fects of observation errors on the statistics for ensemble spread and reliability. Mon. Wea. Rev . 132 , 1487 - 1501 .  

  28. Schwartz , C. , Kain , J. , Coniglio , M. , Weiss , S. , Bright , D. and co-authors . 2010 . Toward improved convection-allowing ensembles: model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Am. MeteoroL Soc . 25 ( 1 ), 263 - 280 .  

  29. Toth , Z. and Kalnay , E ., 1993 , Ensemble forecasting at NMC: the gen-eration of perturbations . Bull. Amer Meteorol. Soc . 74 , 2317 – 2330 .  

  30. Vitart , F. , Buizza , R. , Balmaseda M. A. , Balsamo , G. , Bidlot , J.-R. and co-authors . 2008 . The new VarEPS-monthly forecasting system: a first step towards seamless prediction. Q. J. R. MeteoroL Soc . 134 ( 636 ), 1789-1799. https://doi.org/10.1002/qj.322 .  

  31. Walser , A. , Arpagus , M , Appenzeller , C. and Leutbecher , M . 2006 . The impact of moist singular vectors and horizontal resolution on short-range limited-area ensemble forecasts for two European winter storms. Mon . Wea. Re v . 134 . 2877 – 2887 .  

comments powered by Disqus