Start Submission Become a Reviewer

Reading: A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its applicat...

Download

A- A+
Alt. Display

Original Research Papers

A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its application to the NCEP reanalysis data

Authors:

Johannes Karstensen ,

Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, DE
X close

Katja Lorbacher

Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, DE; CSIRO-CMAR, Private Bag 1, Aspendale, VIC 3195, AU
X close

Abstract

The buoyancy flux at the air/sea interface plays a key role in water mass transformation and mixing as it modifies surface water density and in turn drives overturning and enhances stratification. It is the interplay of these two independent heat and freshwater buoyancy flux components that is of central importance when analysing mechanisms of the ocean/atmosphere interaction. Here, a diagnostic quantity (ΘB) is presented that allows to capture the relative contribution of both components on the buoyancy flux in one single quantity. Using NCEP reanalysis of heat and freshwater fluxes (1948–2009) demonstrates that ΘB is a convenient tool to analyse both the temporal and spatial variability of their corresponding buoyancy fluxes. For the global ocean the areal extent of buoyancy gain and loss regions changed by 10%, with the largest extent of buoyancy gain during the 1970–1990 period. In the subpolar North Atlantic, and likewise in the South Pacific, decadal variability in freshwater flux is pronounced and, for the latter region, takes control over the total buoyancy flux since the 1980s. Some of the areal extent time series show a significant correlation with large-scale climate indices.

How to Cite: Karstensen, J. and Lorbacher, K., 2011. A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its application to the NCEP reanalysis data. Tellus A: Dynamic Meteorology and Oceanography, 63(2), pp.338–347. DOI: http://doi.org/10.1111/j.1600-0870.2011.00510.x
7
Citations
  Published on 01 Jan 2011
 Accepted on 20 Sep 2010            Submitted on 11 Jan 2009

References

  1. Anderson , D. , Stockdale , T. , Balmaseda , M. , Ferranti , L. , Vitart , F. and co-authors . 2006 . Seasonal Forecast System 3. ECMWF Newsletter , 19 - 25 .  

  2. Balmaseda , M. , Freeanti , L. , Molteni , F. and Palmer , T. N . 2009 . Impact of 2007 and 2008 Arctic Ice Anomalies on the Atmospheric Circulation: Implications for Long-Range Predictions. Technical Memorandum 595. ECMWF , http://www.ecmwf.int/publications/library/do/references/list/show?id=89212 .  

  3. Balmaseda , M. A. , Vidard , A. and Anderson , D. L. T . 2007 . The ECMWF System 3 ocean analysis system . Technical Memorandum 508. ECMWF.  

  4. Balmaseda , M. A. , Ferranti , L. , Molteni , F. and Palmer , T. N . 2010 . Impact of 2007 and 2008 Arctic ice anomalies on the atmo-spheric circulation: implications for long-range predictions. QJRMS , https://doi.org/10.1002/qj.661 .  

  5. Benestad , R. E . 2005 . On Latitudinal Profiles of Zonal Means. Geophys. Res. Lett . 32 , https://doi.org/10.1029/2005GL023652 .  

  6. Benestad , R. E . 2006 . Can we expect more extreme precipitation on the monthly time scale? J. Clim . 19 , 630 – 637 .  

  7. Benestad , R. E. and Chen , D . 2006 . The use of a Calculus-based Cy-clone Identification method for generating storm statistics . Tellus , 58A , 473 – 486 , https://doi.org/10.1111/j.1600-0870.2006.00191.x .  

  8. Benestad , R. E. , Hanssen-Bauer , I. and Forland , E . J . 2002 . Empirically downscaled temperature scenarios for Svalbard. Atm. Sci. Lett., 3, Issue 2-4 , https://doi.org/10.1006/asle.2002 . 0051 , 71 - 93 .  

  9. Derome , J. , Brunet , G. , Plante , A. , Gagnon , N. , Boer , G. J. and co-authors. 2001. Seasonal Predictions Based on Two Dynamical Mod-els. Atm.-Ocean , 39 ( 4 ), 485 - 501 .  

  10. Deser , C. , Magnusdottir , G. , Saravanan , R. and Phillips , A . 2004 . The effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part II: direct and indirect components of the response . J. Clim . 17 , 877 – 889 .  

  11. Dix , M. R. and Hunt , B. G . 1995 . Chaotic influences and the problem of deterministic seasonal predictions . Int. J. Climatol . 15 ( 7 ), 729 – 752 .  

  12. Doblas-Reyes , F. J. , Hagedorn , R. and Palmer , T. N . 2007 . Develop-ments in dynamical seasonal forecasting relevant to agricultural man-agement . Clim. Res . 33 , 19 – 26 .  

  13. Francis , J. A. , Chan , W. , Leathers , D. J. , Miller , J. R. and Veron , D. E. 2009 . Winter Northern Hemisphere weather patterns remem-ber summer Arctic sea ice extent. Geophys. Res. Lett. 36, L07503 https://doi.org/10.1029/2009GL037274 .  

  14. Hill , T. and Lewicici , P . 2005 . Statistics: Methods and Applications : A Comprehensive Reference for Science , Industry, and Data Mining. Tulsa, OK, USA : StatSoft .  

  15. Holland , M. M. , bitz , C. M. and Tremblay , B . 2006 . Future abrupt reductions in the summer Arctic sea ice . Geophys. Res. Lett . 33 , L23503 , https://doi.org/10.1029/2006GL028024 .  

  16. Johansson , A . 2007 . Prediction skill of the NAO and PNA from Daily to Seasonal Time Scales . J. Clim . 20 , 1957 – 1975 .  

  17. Kauker , F. , Kaminski , T. , Karcher , M. , Giering , R. , Gerdes , R. and co-authors . 2009 . Adjoint analysis of the 2007 all time Arctic sea-ice min-imum. Geophys. Res. Lett . 36 , L03707 , https://doi.org/10.1029/2008GL036323 .  

  18. Kundzewicz , Z. W. , Mata , L. J. , Arnell , N. , Doll , P. , Kabat , P. and co-authors . 2007 . Climate Change: Impacts, Adaptation and Vulnerabilit . Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univer-sity Press, United Kingdom and New York, NY, USA.  

  19. Lorenz , E . 1967 . The Nature and Theory of the General Circulation of the Atmosphere . Publication 218. World Meteorological Organization, Geneva, Switzerland.  

  20. Magnusdottir , G. , Deser , C. and Saravanan , R . 2004 . The Effects of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part I:Main Features and Storm Track Characteristics of the Response . J. Clim . 17 , 857 – 875 .  

  21. Meehl , G. A. , Stocker , T. F. , Idlingstein , W. D. , Gaye , A. T. , Gre-gory , J. M. , Kitoh , A. , Knutti , R. , Murphy , J. M. , Noda , A. , Raper , S. C. B. , Watterson , I. G. , Weaver , A. J. , Zhao , Z.-C . 2007 . Climate Change: The Physical Science Basis. Chap. Global Climate Projections. United Kingdom and New York, NY, USA. Cambridge University Press.  

  22. Melsom , A . 2009 . Ocean sea ice atmosphere heat fluxes over the Arctic Ocean . Note 14/2009. met.no, http://met.no/Forskning/Publilcasjoner_2009.  

  23. Overland , J. E. and Wang , M . 2010 . Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice . Tellus A . 62 , 1 – 9 .  

  24. Persson , A. and Grazzini , F . 2005 . User Guide to ECMWF forecast products . Meteorological Bulletin M3.2. ECMWF, www.ecmwtint/products/forecasts/guide/user_guide.pdf.  

  25. RDevelopment Core Team . 2004 . R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.  

  26. Reynolds , R. W. , Rayner , N. R. , Smith , T. M. , Stokes , D. C. and Wang , W . 2002 . An improved in situ and satellite SST analysis for climate . J. Clim . 15 , 1609 – 1625 .  

  27. Rowell , D. P . 1998 . Assessing Potential Seasonal Predictability with an Ensemble of Multidecadal GCM Simulations . J. Clim . 11 , 109 – 120 .  

  28. Seierstad , I. A. and Bader , J . 2008 . Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO . Clim. Dynam . 33 , 937 – 943 .  

  29. Senan , R. and Benestad , R. E . 2009 . Transitional irregularity in sea surface temperature from the ECMWF operational ocean analysis. Note 22. met.no, www.met.no.  

  30. Serreze , M. C. , Barrett , A. P. , Stroeve , J. C. , Kindig , D. N. and Holland , M. M . 2009 . The emergence of surface-based Arctic amplification . The Ciyosphere 3 , 11 – 19 https://doi.org/10.5194/tc-3-11-2009 .  

  31. Singarayer , J. S. , Bamber , J. L. and Valdes , P. J . 2006 . Twenty-first-Century Impacts from a Declining Arctic Sea Ice Cover . J. Clim . 19 , 1109 – 1125 .  

  32. Sivakumar , M. V. K . 2007 . climate prediction and agriculture: current status and future challenges . Clim. Res . 33 , 3 – 17 .  

  33. Sorteberg , A. and Kvingedal , B . 2006 . Atmospheric Forcing on the Barents Sea Winter Ice Extent . J. Clim . 19 , 4772 – 4784 .  

  34. Stockdale , T. N. , Anderson , D. L. T. , Alves , J. O. S. and Balmaseda , M. A. 1998. Global seasonal rainfall forecasts using a coupled ocean-atmosphere model. Nature 392 , 370 - 373 .  

  35. Stroeve , J. , Holland , M. M. , Meier , W. , Scambos , T. and Serreze , M . 2007 . Artie sea ice decline: Faster than forecast . Geophys. Res. Lett . 34 , L09501 https://doi.org/10.1029/3007GL029703 .  

  36. Stroeve , J. , Serreze , M. , Drobot , S. , Gearheard , S. , Holland , M. and co-authors . 2008 . Arctic Sea Ice Extent Plummets in 2007. Eos 89 ( 2 ), 13 - 14 .  

  37. Wilkinson , G. N. and Rogers , C. E . 1973 . Symbolic Description of Factorial Models for Analysis of Variance . AppL StaL 22 , 392 – 399 .  

  38. Wilks , D. S . 2006 . On “Field Significance” and the False Discovery Rate J. Appl. MeteoroL ClimatoL 45 , 1181 - 1189 https://doi.org/10.1175/JAM2404.1 .  

  39. Willcs , D. S . 1995 . Statistical Methods in the Atmospheric Sciences . Orlando, Florida, USA , Academic Press .  

  40. Yan , Z. , Bate , S. , Chandler , R. E. , Isham , V. and Wheater , H . 2006 . Changes in extreme wind speeds in NW Europe simulated by generalized linear models . Theoret. AppL Climatol . 83 , 121 – 137 .  

comments powered by Disqus