Start Submission Become a Reviewer

Reading: The ETKF rescaling scheme in HIRLAM

Download

A- A+
Alt. Display

Original Research Papers

The ETKF rescaling scheme in HIRLAM

Authors:

Jelena Bojarova ,

The Norwegian Meteorological Institute, P.O. Box 43, Blindern, NO-0313 Oslo, NO
X close

Nils Gustafsson,

The Swedish Meteorological and Hydrological Institute, SMHI, SE-601 76, Norrköping, SE
X close

Åke Johansson,

The Swedish Meteorological and Hydrological Institute, SMHI, SE-601 76, Norrköping, SE
X close

Ole Vignes

The Norwegian Meteorological Institute, P.O. Box 43, Blindern, NO-0313 Oslo, NO
X close

Abstract

The ETKF rescaling scheme has been implemented into the HIRLAM forecasting system in order to estimate the uncertainty of the model state. The main purpose is to utilize this uncertainty information for modelling of flowdependent background error covariances within the framework of a hybrid variational ensemble data assimilation scheme. The effects of rank-deficiency in the ETKF formulation is explained and the need for variance inflation as a way to compensate for these effects is justified. A filter spin-up algorithm is proposed as a refinement of the variance inflation. The proposed spin-up algorithm will also act to prevent ensemble collapse since the ensemble will receive ‘fresh blood’ in the form of additional perturbation components, generated on the basis of a static background error covariance matrix. The resulting ETKF-based ensemble perturbations are compared with ensemble perturbations based on targeted singular vectors and are shown to have more realistic spectral characteristics.

How to Cite: Bojarova, J., Gustafsson, N., Johansson, Å. and Vignes, O., 2011. The ETKF rescaling scheme in HIRLAM. Tellus A: Dynamic Meteorology and Oceanography, 63(3), pp.385–401. DOI: http://doi.org/10.1111/j.1600-0870.2011.00513.x
6
Citations
  Published on 01 Jan 2011
 Accepted on 4 Jan 2011            Submitted on 11 Jan 2010

References

  1. Anderson , J. L . 2001 . An ensemble adjustment filter for data assimilation. Mon . Weather Re v . 129 , 2884 – 2903 .  

  2. Anderson , J. L. and Anderson , S. L . 1999 . A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimi-lations and forecasts. Mon . Weather Re v . 127 , 2741 – 2758 .  

  3. Barkmeijer , J. , Buizza , R. and Palmer , T. N . 1999 . 3D-Var Hessian Singular Vectors and their potential use in ECMWF Ensemble Prediction System . Q. J. R. MeteoroL Soc . 125 , 2333 – 2351 .  

  4. Bengtsson , T. , Snyder , C. and Nychlca , D . 2003 . Toward a nonlin-ear ensemble filter for high-dimensional systems . J. Geophys. Res . 108 ( D24 ), 8775 , https://doi.org/10.1029/2002JD002900 .  

  5. Berre , L . 2000 . Estimation of synoptic and mesoscale forecast error covariances in a limited area model. Mon . Weather Re v . 128 , 644 – 667 .  

  6. Bishop , C. H. , Etherton , B. J. and Majumdar , S. J . 2001 . Adaptive sam-pling with the Ensemble Transform Kalman Filter, Part I: theoretical aspects. Mon . Weather Re v . 129 , 420 – 436 .  

  7. Buizza , R . 1994 . Localisation of optimal perturbations using a projection operator . Q. J. R. MeteoroL Soc . 120 , 1647 – 1681 .  

  8. Cohn , S. E. , da Silva , A. M. , Guo , J. , Sienlciewich , M. and Lamich , D . 1998 . Assessing the effect of data selection with the DAO Physical-space Statistical Analysis System (PSAS). Mon . Weather Re v . 126 , 2913 – 2926 .  

  9. Courtier , P. , Thepaut , J. N. and Hollngswirth , A . 1994 . A strategy for op-erational implementation of 4D-Var, using an incremental approach . Q. J. R. MeteoroL Soc . 120 , 1367 – 1387 .  

  10. Durbin , J. and Koopman , S. J . 2001 . lime Series Analysis by State Space Methods . Oxford Statistical Science Series , Oxford University Press , Oxford .  

  11. Errico , R. M . 2000 . Interpretation of the total energy and rotational energy norms to determination of singular vectors . Q. J. R. Meteor Soc . 126 , 1581 – 1600 .  

  12. Evensen , G . 1994 . Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statis-tics . J. Geophys. Res . 99 , 10 143-10 162 .  

  13. Frogner , I.-L. and Iversen , T . 2002 . High-resolution limited area ensem-ble predictions based on low-resolution targeted singular vectors . Q. J. R. Meteorol. Soc . 128 , 1321 – 1341 .  

  14. Gustafsson , N. , Berre , L. , Hörnquist , S. , Huang , X.-Y. , Lindskog , M. and co-authors . 2001 . Three-dimensional variational data assimilation for a limited area model, Part I: general formulation and the background error constraint. Tellus 53A , 425 - 446 .  

  15. Hamill , T. M. and Snyder , C . 2000 . A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon . Weather Re v . 128 , 2905 – 2919 .  

  16. Heemink , A. W. , Verlaan , M. and Segers , A. J . 2001 . Variance reduced ensemble Kalman filtering. Mon . Weather Re v . 129 , 1718 – 1728 .  

  17. Houterkamer , P. L. and Mitchell , H. L . 1998 . Data Assimilation using ensemble Kalman filter technique. Mon . Weather Re v . 126 , 796 – 811 .  

  18. Julier , S. J. and Uhlmann , J. K . 1997 . A new extension of the Kalman filter to non-linear systems. Int. Symp. Aerospace/Defense Sensing, Simulations and Controls 3 , https://doi.org/10.1117/12.280797 .  

  19. Kalman , R. E . 1960 . A new approach to linear filtering and prediction problems . J. Basic Eng . 82 , 35 – 45 .  

  20. Kalman , R. E. and Bucy , R. S . 1961 . New results in linear filtering and prediction . J. Basic Eng . 83D , 95 – 108 .  

  21. Keppert , J. D . 2004 . On ensemble representation of the observation error covariance in the ensemble Kalman Filter . Ocean Dyn . 54 , 561 – 569 .  

  22. Le Dimet , F. X. and Talagrand , O. 1986 . Variational algorithm for anal-ysis and assimilation of meteorological observations: theoretical aspects . Tellus 38A , 97 - 110 .  

  23. Lindskog , M. , Gustafsson , N. and Mogensen , K. S . 2006 . Representation of background error standard deviations in a limited area model data assimilation system . Tellus 58A , 430 – 444 .  

  24. Lorene , A . 2003 . The potential of the ensemble Kalman filter for NVVP: a comparison with 4D-Var. Q. J. R. MeteoroL Soc. 129, 3183-3203. Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J. and co-authors. 2004. A local ensemble Kalman filter for atmospheric data assimilation . Tellus 56A , 415 – 428 .  

  25. Parrish , D. F. and Derber , J. C . 1992 . The National Meteorological Center’s statistical-interpolation analysis system. Mon . Weather Re v . 120 , 1747 – 1763 .  

  26. Pham , D. T. , Verron , J. and Roubaud , M. C . 1998 . A singular evolutive extended Kalman filter for data assimilation in oceanography . Mar SysL 16 , 323 – 340 .  

  27. Sakov , P. and Oke , P. R . 2008 . Implication of the form of the ensemble transformation in the ensemble square root filters. Mon . Weather Re v . 136 , 1042 – 1053 .  

  28. Talagrand , O. 1981 . A study of the dynamics of four-dimensional data assimilation . Tellus 33 , 43 – 60 .  

  29. Tippet , M. K. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S . 2003 . Ensemble square root filters. Mon . Weather Re v . 131 , 1485 – 1491 .  

  30. Toth , Z. and Kalnay , E . 1997 . Ensemble forecasting at NCEP and the Breeding Method. Mon . Weather Re v . 125 , 3297 – 3319 .  

  31. Unden , P. , Rontu , L. , Järvinen , H. , Lunch , R , Calvo , J. and co-authors . 2002 . HIRLAM-5 Scientific Documentation. http://hirlam.org/(Available from SMHI, SE-61767 Norrkoping, Sweden). Accessed 7 Feb 2011 .  

  32. Verlaan , M. and Heeminlc , A. W . 1997 . Tidal flow forecasting us-ing reduced-rank square root filters . Stoch. HydroL Hydraulics 11 , 349 – 368 .  

  33. Wang , X. and Bishop , C. H . 2003 . A comparison of Breeding and En-semble Transform Kalman Filter Ensemble Forecasting Schemes. J. Atmos. Sc i . 60 , 1140 – 1158 .  

  34. Wang , X. , Bishop , C. H. and Julier , S. J . 2004 . Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon . Weather Re v . 132 , 1590 – 1605 .  

  35. Wang , X. , Hamill , T. M. , Whilcaker , J. S. and Bishop , C. H . 2007a . Comparison of hybrid Ensemble Transform Kalman Filter: Optimum Interpolation and Ensemble Square Root Analysis Schemes. Mon . Weather Re v . 135 , 1055 – 1076 .  

  36. Wang , X. , Snyder , C. and Hamill , T. M . 2007b . On the theoretical equivalence of differently proposed ensemble-3DVar hybrid analysis schemes. Mon . Weather Re v . 135 , 222 – 227 .  

  37. Whitaker , J. and Hamill , T. M . 2002 . Ensemble data assimilation without perturbed observations. Mon . Weather Re v . 130 , 1913 – 1924 .  

comments powered by Disqus