Start Submission Become a Reviewer

Reading: On the meridional structure of extra-tropical Rossby waves

Download

A- A+
Alt. Display

Original Research Papers

On the meridional structure of extra-tropical Rossby waves

Authors:

Yosef Ashkenazy ,

Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, IL
X close

Nathan Paldor,

Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, IL
X close

Yair Zarmi

Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, IL
X close

Abstract

The common derivation of Rossby waves is based on the quasi-geostrophic approximation. A simple non-harmonic approximation for extratropical Rossby waves on the sphere is proposed, in which the meridional coordinate is a parameter instead of a continuous variable. It is shown that, in contrast to the quasi-geostrophic solution, to first order the meridional structure of these non-harmonic Rossby waves becomes irrelevant for determining the dispersion relation in this theory. The proposed approximation accurately reproduces numerical results obtained from runs of an ocean general circulation model initiated from several initial meridional structures and captures the latitudinal dependence of the phase speed of these waves. The proposed theory yields explicit expressions for the dispersion relation and for the meridional structure of the waves.

How to Cite: Ashkenazy, Y., Paldor, N. and Zarmi, Y., 2011. On the meridional structure of extra-tropical Rossby waves. Tellus A: Dynamic Meteorology and Oceanography, 63(4), pp.817–827. DOI: http://doi.org/10.1111/j.1600-0870.2011.00516.x
1
Citations
  Published on 01 Jan 2011
 Accepted on 21 Jan 2011            Submitted on 27 Jun 2010

References

  1. Adcroft , A. , Campin , J.-M. , Heimbach , P. , Hill , C. and Marshall , J . 2002 . MITgcm release manual (online documentation), MIT/EAPS, Cambridge, MA 02139, USA . http : //mitgcm.org/sealion/online_ documents/manual.html .  

  2. Cane , M. A. and Sarachilc , E. S . 1976 . Forced baroclinic ocean motions I: the linear equatorial unbounded case . J. Mar Res . 34 , 629 – 664 .  

  3. Cane , M. A. and Sarachilc , E. S . 1981 . The response of a linear baroclinic equatorial ocean to periodic forcing . J. Mar Res . 39 , 651 – 693 .  

  4. Cessi , P. and Louazel , S . 2001 . Decadal oceanic response to stochastic wind forcing . J. Phys. Oceanogr 31 , 3020 – 3029 .  

  5. Chelton , D. B ., deSzoeke , R. A. , Schlax , M. G. , El-Nagger , K. and Si-wertz , N. 1998. Geophysical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr . 28 , 433 - 460 .  

  6. De-Leon , Y. and Paldor , N . 2011 . Zonally propagating wave solutions of Laplace Tidal Equations in a baroclinic ocean of an aqua-planet . Tellus A 63A , 348 – 353 .  

  7. Emile-Geay , J. and Cane , M. A . 2009 . Pacific decadal variability in the view of linear equatorial wave theory . J. Phys. Oceanogr 39 , 203 – 219 .  

  8. Gill , A. E . 1982 . Atmosphere—Ocean Dynamics Gill, A . E. Academic Press , London .  

  9. Hough , S. S . 1898 . On the application of harmonic analysis to the dy-namical theory of the tides. II. On the general integration of Laplace’s tidal equations . Philos. Trans. Roy. Soc. Lond. A 191 , 139 – 185 .  

  10. LeBlond , P. H. and Mysak , L. A . 1978 . Waves in the Ocean . Elsevier Oceanography Series. Elsevier , Amsterdam .  

  11. Longuet-Higgins , M. S . 1968a . Double Kelvin waves with continuous depth profiles . J. Fluid Mech . 34 , 49 – 80 .  

  12. Longuet-Higgins , M. S . 1968b . The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. Roy . Soc. Lond. A 262 ( 1132 ), 511 – 607 .  

  13. Margules , M . 1893 . Luftbewegungen in einer rotierenden sphiroid-schale . Sber Akad. Wiss. Wien 102 , 11 – 56 .  

  14. Marshall , J. , Adcroft , A. , Hill , C. , Perelman , L. and Heisey , C . 1997a . A finite-volume , incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res . 102C3 , 5753 – 5766 .  

  15. Marshall , J. , Hill , C. , Perelman , L. and Adcroft , A . 1997b . Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling . J. Geophys. Res . 102 ( C3 ), 5733 – 5752 .  

  16. Meyers , G . 1979 . On the annual Rossby wave in the tropical North Pacific ocean . J. Phys. Oceanogr 9 , 663 – 674 .  

  17. Paldor , N. and Sigalov , A . 2008 . Trapped waves on the mid-latitude beta-plane . Tellus 60A , 742 – 748 .  

  18. Pedlosky , J . 1987 . Geophysical Fluid Dynamics . 2 Edition. Springer-Verlag, Berlin-Heidelberg-New York.  

  19. Pedlosky , J . 2003 . Waves in the Ocean and Atmosphere . Springer-Verlag , Berlin-Heidelberg-New York .  

  20. Poulin , F. J . 2009 . Can long meridional length scales yield faster Rossby waves? J. Phys. Oceanogr 39 ( 2 ), 472 – 478 .  

  21. Primeau , F . 2002 . Long Rossby wave basin-crossing time and the resonance of low-frequency basin modes . J. Phys. Oceanogr 32 , 2652 – 2665 .  

  22. Rossby , C. G . 1939 . Relation between variation in the intensity of the zonal circulation of the atmosphere and the displacement of the semi-permanent centers of action . J. Mar Res . 2 ( 1 ), 38 – 55 .  

  23. Schopf , P. S. , Anderson , D. L. T. and Smith , R . 1981 . Beta disper-sion of low-frequency Rossby waves . Dyn. Atmos. Oceans 5 , 187 – 214 .  

  24. Vallis , G. K . 2006 . Atmospheric and Oceanic Fluid Dynamics . Cam-bridge University Press, Cambridge , UK .  

  25. Williams , G. P . 1985 . Geostrophic regimes on a sphere and a beta plane . J. Atmos. Sci . 42 ( 12 ), 1237 – 1243 .  

comments powered by Disqus