Start Submission Become a Reviewer

Reading: A continuous buoyancy based convection scheme: one- and three-dimensional validation

Download

A- A+
Alt. Display

Original Research Papers

A continuous buoyancy based convection scheme: one- and three-dimensional validation

Author:

J. F. Guérémy

Météo-France, Centre National de Recherches Météorologiques (CNRM), 42 av. G. Coriolis, 31057 Toulouse, FR
X close

Abstract

A new and consistent convection scheme, providing continuous treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is buoyancy, a key element of any convective vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux and the rates of entrainment—detrainment. The buoyancy is also used in its vertically integrated form to express the closure condition as a CAPE relaxation. The continuous treatment of convection from dry thermals to deep precipitating cumulus is made possible through the use of a continuous formulation of the entrainment—detrainment rates and CAPE relaxation time, together with an embedded precipitation scheme. This convection scheme is first evaluated with the help of single-column model simulations of specific case studies encompassing a variety of convective situations. Second, a coupled general-circulation model multiyear simulation is provided as a means to assess the model climate with respect to observations.

How to Cite: Guérémy, J.F., 2011. A continuous buoyancy based convection scheme: one- and three-dimensional validation. Tellus A: Dynamic Meteorology and Oceanography, 63(4), pp.687–706. DOI: http://doi.org/10.1111/j.1600-0870.2011.00521.x
2
Views
39
Citations
  Published on 01 Jan 2011
 Accepted on 28 Feb 2011            Submitted on 20 Apr 2010

References

  1. Arakawa , A . 2004 . The cumulus parameterization problem: past, present and future . J. Clim . 17 , 2493 – 2525 .  

  2. Aralcawa , A. and Schubert , W. H . 1974 . Interaction of a cumulus cloud ensemble with the large-scale environment: Part I. J. Atmos. Sc i . 31 , 674 – 701 .  

  3. Bechtold , P. , Redelsperger , J.-L. , Beau , I. , Blackburn , M. , Brinkop , S. and co-authors . 2000 . A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE.intercomparison ofsingle-column models and a cloud-resolving model. Q. J. R. MeteoroL Soc . 126 , 865 - 888 .  

  4. Bechtold , P. , Kiihler , M. , Jung , T. , Doblas-Reyes , F. , Leutbecher , M. and co-authors . 2008. Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q. J. R. MeteoroL Soc . 134 , 1337-135 1 .  

  5. Betts , A. K. and Miller , M. J . 1986 . A new convective adjustment scheme. Part IL single-column tests using GATE wave, BOMEX, ASTEX, and arctic air-mass data sets . Q. J. R. MeteoroL Soc . 112 , 693 – 709 .  

  6. Bougeault , P . 1985 . A simple parameterization of the large-scale effects of cumulus convection. Mon . Weather Re v . 113 , 2108 – 2121 .  

  7. Bretherton , C. S. , Mc Coo , J. R. and Grenier , H . 2004 . A new parameter-ization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Mon . Weather Re v . 132 , 864 – 882 .  

  8. Ceron , J.-P. and Gueremy , J.-F . 1999 . Validation of the space-time vari-ability of African easterly waves simulated by the CNRM GCM . J. Clim . 12 , 2831 – 2855 .  

  9. Chen , D. H. and Bougeault , P . 1992 . A simple prognostic closure as-sumption to deep convective parameterization: I . Acta Meteorologica Sinica 7 , 1 – 18 .  

  10. Cuxart , J. , Bougeault , P. and Redelsperger , J . -L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. MeteoroL Soc . 126 , 1 - 30 .  

  11. Donner , L. J . 1993 . A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sc i . 50 , 889 – 906 .  

  12. Emanuel , K. A . 1991 . A scheme for representing cumulus convection in large-scale models. J. Atmos. Sc i . 48 , 2313 – 2335 .  

  13. Geleyn , J.-E , Bazile , E. , Bougeault , R , Deque , M. , Ivanovici , V. and co-authors . 1994 . Atmospheric parametrisation schemes in Meteo-France’s ARPEGE N.W.P. model. ECMWF Seminar 94: Physical Parametrisations in Numerical Models, 385 – 402 .  

  14. Gibelin , A.-L. and Deque , M . 2003 . Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model . Clim. Dyn . 20 , 327 – 339 .  

  15. Gill , A. E . 1980 . Some simple solutions for heat-induced tropical circu-lation . Q. J. R. MeteoroL Soc . 106 , 447 – 462 .  

  16. Gregory , D. and Rowntree , P. R . 1990 . A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon . Weather Re v . 118 , 1483 – 1506 .  

  17. Guichard , F. , Retch , J. C. , Redelsperger , J.-L. , Bechtold , R , Chaboureau , J.-P. and co-authors . 2004. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. MeteoroL Soc . 130 , 3139-317 2 .  

  18. Huffman , G. J. , Adler , R. F. , Arkin , P. , Chang , A. , Ferraro , R. and co-authors . 1997 . The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc . 78 , 5 - 20 .  

  19. Jorgensen , D. P. , Le Mone , M. A. and Trier , S. B . 1997 . Structure and evolution of the 22 February 1993 TOGA-COARE squall line: observations of precipitation, circulation, and surface energy fluxes. J. Atmoes. Sc i . 54 , 1961 – 1985 .  

  20. Kain , J. S. and Fritsch , J. M . 1990 . A one-dimensional entrain-ing/detraining plume model and its application in convective param-eterizations. J. Atmos. Sc i . 47 , 2784 – 2802 .  

  21. Kershaw , R. and Gregory , D . 1997 . Parameterization of momentum transport by convection - I: theory and cloud modelling results . Q. J. R. Meteorol. Soc . 123 , 1133 – 1151 .  

  22. Kessler , E . 1969 . On the distribution and continuity of water substance in atmospheric circulations . Met. Mon . 10 , American Met. Soc ., 84 pp .  

  23. Kiehl , J. T. and Trenberth , K. E . 1997 . Earth’s annual global mean energy budget . Bull. Am. MeteoroL Soc . 78 , 197 – 208 .  

  24. Liebmann , B. and Smith , C. A . 1996 . Description of a complete (inter-polated) outgoing longwave radiation dataset . Bull. Am. Meteor Soc . 77 , 1275 – 1277 .  

  25. Lin , J.-N. , Kiladis , G. N. , Mapes , B. E. , Weicicmann , K. M. , Sperber , K. R. and co-authors . 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective Signals. J. Clim . 19 , 2665-269 0 .  

  26. Liu , J. Y. and Orville , H. D . 1969 . Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sc i . 26 , 1283 – 1298 .  

  27. Lopez , P . 2002 . Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes . Q. J. R. MeteoroL Soc . 128 , 229 – 257 .  

  28. Louis , J. F . 1979 . A parametric model of vertical eddy fluxes in the atmosphere . Bound. Layer MeteoroL 17 , 187 – 202 .  

  29. Madec , G . 2008 . “NEMO reference manual, ocean dynamics com-ponent: NEMO-OPA preliminary version”. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288 - 1619 .  

  30. Manabe , S. , Smagorinsky , J. and Strickler , R. F . 1965 . Simulated clima-tology of a general circulation model with a hydrological cycle. Mon . Weather Re v . 93 , 769 – 798 .  

  31. Matsuno , T . 1966 . Quasi-geostrophic motions in the equatorial area . J. MeteoroL Soc. Japan 44 , 25 – 43 .  

  32. Morcrette , J.-J . 1990 . Impact of changes to the radiation transfer param-eterizations plus cloud optical properties in the ECMWF model . Q. J. R. MeteoroL Soc . 111 , 691 – 708 .  

  33. Nitta , T. and Esbensen , S . 1974 . Heat and moisture budget analyses using BOMEX data. Mon . Weather Re v . 102 , 17 – 28 .  

  34. Nordeng , T. E . 1994 . Extended versions of the convective parametriza-tion scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum N. 206, ECMWF, Reading, UK.  

  35. Randall , D. A. , Wood , R. A. , Bony , S. , Colman , R. , Fichefet , T. and co-authors . 2007 . Climate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis . Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA.  

  36. Redelsperger , J.-L. , Brown , P. R. A. , Guichard , F. , Hoff , C. , Kawasima , M. and co-authors . 2000 . A GCSS model intercomparison for a trop-ical squall line observed during TOGA-COARE. I: Cloud-resolving models. Q. J. R. Meteorol. Soc . 126 , 823 - 863 .  

  37. Siebesma , A. P. and Cuijpers , J. W. M . 1995 . Evaluation of paramet-ric assumptions for shallow cumulus convection. J. Atmos. Sc i . 52 , 650 – 666 .  

  38. Siebesma , A. R , Bretherton , C. S. , Brown , A. , Chlond , A. , Cuxart , J. and co-authors . 2003. A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci . 60 , 1201-121 9 .  

  39. Simpson , J . 1971 . On cumulus entrainment and one-dimensional models. J. Atmos. Sc i . 28 , 449 – 455 .  

  40. Simpson , J. and Wiggert , V . 1969 . Models of precipitating cumulus towers. Mon . Weather Re v . 97 , 471 – 489 .  

  41. Smith , R. N. B . 1990 . A scheme for predicting layer clouds and their water content in a GCM . Q. J. R. MeteoroL Soc . 116 , 435 – 460 .  

  42. Tiedtke , M . 1989 . A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon . Weather Re v . 117 , 1779 – 1800 .  

  43. Turner , J. S . 1963 . The motion of buoyant elements in turbulent sur-roundings . J. Fluid Mech . 16 , 1 – 16 .  

  44. Uppala , S. M. , KAllberg , P. W. , Simmons , A. J. , Andrae , U. , Da Costa Bechtold , V. and co-authors . 2005. The ERA-40 re-analysis. Quart. J. R. MeteoroL Soc . 131 , 2961-301 2 .  

  45. Wheeler , M. and Kiladis , G. N . 1999 . Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber—frequency domain. J. Atmos. Sc i . 56 , 374 – 399 .  

  46. Xie , P. and Arkin , P . 1996 . Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions . J. Clim . 9 , 840 – 858 .  

  47. Xie , S. , Xu , K.-M. , Cederwall , R. T. , Bechtold , R , Del Genio , A. D. and co-authors . 2002. Intercomparison and evaluation of cumulus param-eterizations under summertime midlatitude continental conditions. Q. J. R. MeteoroL Soc . 128 , 1095-113 6 .  

  48. Yanai , M. , Esbensen , S. and Chu , J. H . 1973 . Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sc i . 30 , 611 – 627 .  

  49. Zhang , G. J. and McFarlane , N. A . 1995 . Sensitivity of climate simula-tions to the parameterization of cumulus convection in the Canadian Center general circulation model . Atmos-Ocean 33 , 407 – 446 .  

comments powered by Disqus