Start Submission Become a Reviewer

Reading: Large-scale processes governing the seasonal variability of the Antarctic sea ice

Download

A- A+
Alt. Display

Original Research Papers

Large-scale processes governing the seasonal variability of the Antarctic sea ice

Authors:

Noriaki Kimura ,

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, JP
X close

Masaaki Wakatsuchi

Institute of Low Temperature Science, Hokkaido University, Sapporo, JP
X close

Abstract

The seasonal variability of sea-ice cover in the Southern Ocean is examined using daily sea-ice concentration and ice velocity products for 2003–2009, derived from Advanced Microwave Scanning Radiometer for EOS (AMSR-E) data. This study quantitatively shows the contribution of (1) ice production/reduction within the sea ice, (2) ice production/reduction at the sea-ice edge and (3) zonal ice transport to the seasonal change of sea-ice area. Area of greatest ice production occurs along the coast of Ross Sea and East Antarctica from March to September. The contribution of zonal transport to the seasonal change of ice area is one order magnitude smaller than local ice production/reduction. Clear regional and seasonal differences are found in the large-scale processes named above. Generally, ice area increases due to ice production, both at the ice edge and within the pack in the autumn and winter. The most significant ice production at the ice edge occurred in the Weddell Sea; the ice production provides 56% of total increase of ice cover in this area. In contrast, moderate ice melting occurs at the ice edge through almost all months in the Indian Ocean sector.

How to Cite: Kimura, N. and Wakatsuchi, M., 2011. Large-scale processes governing the seasonal variability of the Antarctic sea ice. Tellus A: Dynamic Meteorology and Oceanography, 63(4), pp.828–840. DOI: http://doi.org/10.1111/j.1600-0870.2011.00526.x
2
Views
1
Downloads
23
Citations
  Published on 01 Jan 2011
 Accepted on 13 Apr 2011            Submitted on 12 Jun 2009

References

  1. Baba , K. , Minobe , S. , Kimura , N. and Walcatsuchi , M . 2006 . Intrasea-sonal variability of sea-ice concentration in the Antarctic with par-ticular emphasis on wind effect . J. Geophys. Res . 111 , C12023 , https://doi.org/10.1029/2005JC003052 .  

  2. Cavalieri , D. J. , Parkinson , C. L. and Vinnilcov , K. Y . 2003 . 30-year satellite record reveals contrasting Arctic and Antarc-tic decadal sea ice variability . Geophys. Res. Lett . 30 , 1970 , https://doi.org/10.1029/2003GL018031 .  

  3. Cavalieri , D. J. , Markus , T. , Hall , D. K. , Gasiewski , A. J. , Klein , M. and co-authors . 2006. Assessment of EOS Aqua AMSR-E Arctic Sea Ice Concentrations Using Landsat-7 and Airborne Microwave Imagery. IEEE Trans. Geosci. Remote Sens . 44 , 3057-306 9 .  

  4. Chen , D. and Yuan , X . 2004 . A Markov model for seasonal forecast of Antarctic sea ice . J. Clim . 17 , 3156 – 3168 .  

  5. Comiso , J. C . 2002 . A rapidly declining Arctic perennial ice cover . Geophys. Res. Lett . 29 , 1956 , https://doi.org/10.1029/2002GL015650 .  

  6. Comiso , J. C. and Nishio , F . 2008 . Trends in the sea ice cover using enhanced and compatible AMSR-E, ssmn, and SM MR data . J. Geo-phys. Res . 113 , CO2507 , https://doi.org/10.1029/2007JC004257 .  

  7. Doble , M. J . 2009 . Simulating pancake and frazil ice growth in the Wed-dell Sea: a process model from freezing to consolidation . J. Geophys. Res . 114 , C09003 , https://doi.org/10.1029/2008JC004935 .  

  8. Eisen , O. J. and Kottmeier , C . 2000 . On the importance of leads in sea ice to the energy balance and ice formation in the Weddell Sea . J. Geophys. Res . 105 , 14 045-14 060 .  

  9. Emery , W. J. , Fowler , C. W. , Hawkins , J. and Preller , R. H . 1991 . Fram Strait satellite image-derived ice motion . J. Geophys. Res . 96 , 4751 – 4768 .  

  10. Emery , W. J. , Fowler , C. W. and Maslanik , J. A . 1997 . Satellite derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994 . Geophys. Res. Lett 24 , 897 – 900 .  

  11. Enomoto , H. and Ohmura , A . 1990 . The influences of atmospheric half-year cycle on the sea ice extent in the Antarctic . J. Geophys. Res . 95 , 9497 – 9511 .  

  12. Fichefet , T. and Maqueda , M. A. M . 1997 . Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics . J. Geophys. Res . 102 , 12 609-12 646 .  

  13. Geiger , C. A. and Drinkwater , M. R . 2005 . Coincident buoy-and SAR-derived surface fluxes in the western Weddell Sea dur-ing Ice Station Weddell 1992 . J. Geophys. Res . 110 , C04002 , https://doi.org/10.1029/2003JC002112 .  

  14. Geiger , C. A. and Perovich , D. K . 2008 . Springtime ice motion in the western Antarctic Peninsula region . Deep-Sea Res . 55 , 338 – 350 .  

  15. Gill , A. E . 1973 . Circulation and bottom water production in the Weddell Sea . Deep-Sea Res . 20 , 111 – 140 .  

  16. Gloersen , P. , Campbell , W. J. , Cavalieri , D. J. , Comiso , J. C. , Parkinson , C. L. and co-authors . 1992 . Arctic and Antarctic sea ice, 1978-1987: satellite passive-microwave observations and analyses. NASA Spec. PubL 511 .  

  17. Gordon , A. L. , Martinson , D. G. and Taylor , H. W . 1981 . The wind-driven circulation in the Weddell-Enderby basin . Deep Sea Res . 28 , 151 – 163 .  

  18. Haas , C. , Gerland , S. , Eicken , H. and Miller , H . 1997 . Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device . Geophysics 62 , 749 – 757 .  

  19. Heil , R , Fowler , C. W. , Maslanik , J. A. , Emery , W. J. and Allison , I . 2001 . A comparison of East Antarctic sea-ice motion derived using drifting buoys and remote sensing . Ann. Glaciol . 33 , 139 – 144 .  

  20. Jacobs , S. S. and Comiso , J. C . 1997 . Climate variability in the Amund-sen and Bellingshausen Sea . J. Clim . 10 , 697 – 709 .  

  21. Jacobs , S. S. and Giulivi , C. E 2010 . Large multidecadal salinity trends near the Pacific-Antarctic continental margin . J. Clim . 23 , 4508 – 4524 .  

  22. Kimura , N . 2004 . Sea ice motion in response to surface wind and ocean current in the Southern Ocean . J. Meteor Soc. Japan 82 , 1223 – 1231 .  

  23. Kimura , N . 2007 . Mechanisms controlling the temporal variation of the sea ice edge in the Southern Ocean . J. Oceanogr 63 , 685 – 694 .  

  24. Kimura , N. and Wakatsuchi , M . 2001 . Mechanisms for the variation of sea-ice extent in the Northern Hemisphere . J. Geophys. Res . 106 , 31 319-31 331 .  

  25. Kimura , N. and Walcatsuchi , M . 2004 . Increase and decrease of sea ice area in the Sea of Okhotsk: ice production in coastal polynyas and dynamic thickening in convergence zones . J. Geophys. Res . 109 , C09503 , https://doi.org/10.1029/2003JC001901 .  

  26. King , J. C. , Doble , M. J. and Holland , P. R . 2010 . Analysis of a rapid sea ice retreat event in the Bellingshausen Sea . J. Geophys. Res . 115 , C12030 , https://doi.org/10.1029/2010JC006101 .  

  27. Kusahara , K. , Hasumi , H. and Tamura , T . 2010 . Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica . J. Geophys. Res . 115 , C10006 , https://doi.org/10.1029/2010JC006133 .  

  28. Markus , T. and Cavalieri , D. J . 2000 . An enhancement of the NASA Team sea ice algorithm . IEEE Trans. Geosci. Remote Sens . 38 , 1387 – 1398 .  

  29. Marsland , S. J. , Bindoff , N. L. , Williams , G. D. and Budd , W. F . 2004 . Modeling water mass formation in the Mertz Glacier Polynya and Adelie Depression, East Antarctica . J. Geophys. Res . 109 , C11003 , https://doi.org/10.1029/2004JC002441 .  

  30. Massom , R. A. , Stammerjohn , S. E. , Lefebvre , W. , Harangozo , S. A. , Adams , N. , and co-authors . 2008 . West Antarctic Peninsula sea ice in 2005: extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. J. Geophys. Res . 113 , CO2520 , https://doi.org/10.1029/2007JC004239 .  

  31. Melling , H. and Riedel , D. A . 1995 . The underside topography of sea ice over the continental shelf of the Beaufort Sea in the winter of 1990 . J. Geophys. Res . 100 , 13 641-13 653 .  

  32. Melling , H. and Riedel , D. A . 1996 . Development of seasonal pack ice in the Beaufort Sea during the winter of 1991-1992: a view from below . J. Geophys. Res . 101 , 11 975-11 991 .  

  33. Nihashi , S. , Ohshima , K. I. , Jeffries , M. O. and Kawamura , T. 2005. Sea-ice melting processes inferred from ice-upper ocean relation-ships in the Ross Sea, Antarctica. J. Geophys. Res . 110 , CO2002 , https://doi.org/10.1029/2003JC002235 .  

  34. Ninnis , R. M. , Emery , W. J. and Collins , M. J . 1986 . Automated ex-traction of pack ice motion from Advanced Very High Resolution Radiometer imagery . J. Geophys. Res . 91 , 10 725-10 734 .  

  35. Orsi , A. H. , Johnson , G. C. and Bullister , J. L . 1999 . Circulation, mix-ing, and production of Antarctic Bottom Water . Prog. Oceanogr . 43 , 55 – 109 .  

  36. Parkinson , C. L . 1992 . Spatial patterns of increases and decreases in the length of the sea ice season . J. Geophys. Res . 97 , 14 377-14 388 .  

  37. Parkinson , C. L . 1994 . Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986 . J. Geophys. Res . 99 , 16 327-16 339 .  

  38. Rintoul , S. R . 1998 . On the origin and influence of Adelie Land Bot-tom Water, in Ocean, Ice and Atmosphere: interactions at Antarctic Continental Margin. In: Ocean, Ice and Atmosphere: Interactions at Antarctic Continental Margin. Antarct. Res. Ser Volume 75 (eds. S. S. Jacobs and R. Weiss ), AGU, Washington, DC. , 151 - 171 .  

  39. Stössel , A. and Markus , T . 2004 . Using satellite-derived ice concentra-tion to represent Antarctic coastal polynyas in ocean climate models . J. Geophys. Res . 109 , CO2014 , https://doi.org/10.1029/2003JC001779 .  

  40. Stroeve , J. C. , Serreze , M. C. , Fetterer , F. , Arbetter , T. , Meier , W. , and co-authors . 2005 . Tracking the Arctic’s shrinking ice cover: Another ex-treme September minimum in 2004. Geophys. Res. Lett . 32 , L04501 , https://doi.org/10.1029/2004GL021810 .  

  41. Tamura , T. , Ohshima , K. I. and Nihashi , S . 2008 . Mapping of sea ice production for Antarctic coastal polynyas . Geophys. Res. Lett . 35 , L07606 , https://doi.org/10.1029/2007GL032903 .  

  42. Toyota , T. , Kawamura , T. , Ohshima , K. I. , Shimoda , H. and Walcat-suchi , M . 2004 . Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamic thickening of sea ice in the southern Sea of Okhotsk . J. Geophys. Res . 109 , C06001 , https://doi.org/10.1029/2003JC002090 .  

  43. Vinnikov , K. Y. , Cavalieri , D. J. and Parkinson , C. L . 2006 . A model as-sessment of satellite observed trends in polar sea ice extents . Geophys. Res. Lett . 33 , L05704 , https://doi.org/10.1029/2005GL025282 .  

  44. Worby , A. P. , Griffin , P. W. , Lytle , V. I. and Massom , R. A . 1999 . On the use of electromagnetic induction sounding to determine winter and spring sea ice thickness in the Antarctic . Cold Reg. Sci. TechnoL 29 , 49 – 58 .  

  45. Worby , A. P. , Jeffries , M. O. , Weeks , W. F. , Morris , K. and Jana , R. 1996. The thickness distribution of sea ice and snow cover during late winter in the Bellingshausen and Amundsen Seas, Antarctica . J. Geophys. Res . 101 , 28 441 - 28 455 .  

  46. Wu , X. , Budd , W. F. and Allison , I . 2003 . Modeling the impact of persistent Antarctic polynyas with an atmosphere-sea-ice general cir-culation model . Deep-Sea Res . 11 50 , 1357 – 1372 .  

  47. Zwally , H. J. , Comiso , J. C. , Parkinson , C. L. , Cavalieri , D. J. and Glo-ersen , P . 2002 . Variability of Antarctic sea ice 1979-1988 . J. Geophys. Res . 107 , 16327-16 339 .  

  48. Zwally , H. J. , Yi , D. , Kwok , R. and Zhao , Y . 2008 . ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea . J. Geophys. Res . 113 , CO2515 , https://doi.org/10.1029/2007JC004284 .  

comments powered by Disqus