Start Submission Become a Reviewer

Reading: Simulations of the snow covered sea ice surface temperature and microwave effective temperature

Download

A- A+
Alt. Display

Original Research Papers

Simulations of the snow covered sea ice surface temperature and microwave effective temperature

Authors:

Rasmus T. Tonboe ,

Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, DK
X close

Gorm Dybkjær,

Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, DK
X close

Jacob L. Høyer

Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, DK
X close

Abstract

The snow surface on thick multiyear sea ice in winter is on average colder than the air because of the negative radiation balance. Beneath the snow surface there is a strong temperature gradient in winter with increasing temperatures towards the ice—water interface temperature at the freezing point around –1.8 °C. The sea ice surface temperature and the thermal microwave brightness temperature were simulated using a combination of thermodynamic and microwave emission models.

The simulations indicate that the physical snow—ice interface temperature or alternatively the 6 GHz effective temperature have a good correlation with the effective temperature at the temperature sounding channels near 50 GHz. The complete correlation matrix based on the simulations for physical and effective temperatures is given.

The physical snow—ice interface temperature is related to the brightness temperature at 6 GHz vertical polarization as expected. However, the emissivity factor normally used when converting brightness temperature to the ice temperature is dependent on the ice temperature. The simulations indicate that a simple model may be used to derive the snow-ice interface temperature from satellite AMSR 6 GHz measurements.

How to Cite: Tonboe, R.T., Dybkjær, G. and Høyer, J.L., 2011. Simulations of the snow covered sea ice surface temperature and microwave effective temperature. Tellus A: Dynamic Meteorology and Oceanography, 63(5), pp.1028–1037. DOI: http://doi.org/10.1111/j.1600-0870.2011.00530.x
1
Views
18
Citations
  Published on 01 Jan 2011
 Accepted on 26 May 2011            Submitted on 10 Sep 2010

References

  1. Bitz , C. and Lipscomb , W . 1999 . An energy-conserving thermodynamic model of sea ice . J. Geophys. Res . 104 ( C7 ), 15 669-15 677 .  

  2. Brun , E. , Martin , E. , Simon , V. , Gendre , C. and Coleou , C . 1989 . An en-ergy and mass model of snow cover suitable for operational avalanche forecasting . J. Glaciol . 35 ( 121 ), 333 – 342 .  

  3. Comiso , J. C , Cavalieri , D. J. , Parkinson , C. L. and Gloersen , P . 1997 . Passive microwave algorithms for sea ice concentration: a comparison of two techniques . Remote Sens. Environ . 60 , 357 – 384 .  

  4. Doronin , Y. P. and Kheisin , D. E . 1977 . Sea Ice . Amerind Publishing Co. Pvt. Ltd ., New Delhi .  

  5. English , S. J . 1999 . Estimation of temperature and humidity profile information from microwave radiances over different surface types . J. AppL MeteoroL 38 , 1526 – 1527 .  

  6. Fichefet , T. and Maqueda , M. A. M . 1997 . Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res . 102 ( C6 ), 12 609-12 646, https://doi.org/10.1029/97JC00480 .  

  7. Heygster , G. , Melsheimer , C. , Mathew , N. , Toudal , L. , Saldo , R. and co-authors . 2009 . POLAR PROGRAM: Integrated Observation and Modeling of the arctic Sea Ice and Atmosphere. Bull. Am. MeteoroL Soc . 90 , 293 - 297 .  

  8. Hwang , B. J. and D. G. Barber . 2008 . On the impact of ice emissivity on the sea ice temperature retrieval using passive microwave radiance data . IEEE Geosci. Remote Sens. Lett . 5 ( 3 ), 448 – 452 .  

  9. Jordan , R. , Andreas , E. and Makshtas , A . 1999 . Heat budget of snow covered sea ice at North Pole 4 . J. Geophys. Res . 104 ( C4 ), 7785 – 7806 .  

  10. Lefebre , F. , Gallee , H. , van Ypersele , J. and Greuell , W . 2003 . Modeling of snow and ice melt at ETH-camp (west Green-land): a study of surface albedo . J. Geophys. Res . 108 ( D8 ), 4231 , https://doi.org/10.1029/2001JDO01160 .  

  11. Makshtas , A. P . 1998 . Thermodynamics of sea ice. In: Physics of Ice-Covered Seas . (ed. Leppäranta , M. ). University Printing House, Helsinki , 289 – 304 .  

  12. Mathew , N. , Heygster , G. and Melsheimer , C . 2009 . Surface emissivity of the Arctic sea ice at AMSR-E frequencies . IEEE Trans. Geosci. Remote Sens . 47 ( 12 ), 4115 – 4124 , https://doi.org/10.1109/TGRS.2009.2023667 .  

  13. Mathew , N. , Heygster , G. , Melsheimer , C. and Kaleschke , L . 2008 . Surface emissivity of polar regions at AMSU window fre-quencies . IEEE Trans. Geosci. Remote Sens . 46 ( 8 ), 2298 – 2306 , https://doi.org/10.1109/TGRS.2008.916630 .  

  14. Mätzler , C . 1998 . Improved Born approximation for scattering of radiation in a granular medium . J. AppL Phys . 83 ( 11 ), 6111 – 6117 .  

  15. Mätzler , C. and Wiesmann , A . 1999 . Extension of the Microwave Emis-sion Model of Layered Snowpacics to coarse-grained snow . Remote Sens. Environ . 70 , 317 – 325 .  

  16. Mätzler , C. , Rosenkranz , P.W. , Battaglia , A. and Wigneron , J.P. , eds. 2006 . Thermal Microwave Radiation—Applications for Remote Sensing, TEE Electromagnetic Waves Series . London , UK .  

  17. Maykut , G. A . 1986 . The surface heat and mass balance. In: The Geo-physics of Sea Ice . (ed. Untersteiner N. ). NATO ASI Series, Plenum Press , New York and London , 395 - 464 .  

  18. Maykut , G. A. and Untersteiner , N . 1971 . Some results from a time-dependent thermodynamic model of sea ice . J. Geophys. Res . 76 ( 6 ), 1550 – 1575 .  

  19. Nakawo , M. and N. K. Sinha . 1981 . Growth rate and salinity profile of first-year sea ice in the high Arctic . J. Glaciol . 27 ( 96 ), 315 – 330 .  

  20. Oelke , C . 1997 . Atmospheric signatures in sea-ice concentration esti-mates from passive microwaves: modelled and observed . Int. J. Re-mote Sens . 18 ( 5 ), 1113 – 1136 .  

  21. Sturm , M. and Holmgren , J . 1998 . Difference in compaction be-haviour of three climate classes of snow . Ann. Glaciol . 26 , 125 – 130 .  

  22. Tonboe , R. T . 2005 . A mass and thermodynamic model for sea ice. Danish Meteorological Institute Scientific Report 05-10, Copenhagen.  

  23. Tonboe , R. T . 2010 . The simulated sea ice thermal microwave emission at window and sounding frequencies . Tellus 62A , 333 – 344 .  

  24. Ulaby , F. T. , Moore , R. K. , Fung , A. K . 1986 . Microwave Remote Sens-ing, Active and Passive, Volume 3 . Artech House , Norwood MA .  

  25. Warren , S. G. , Rigor , I. G. , Untersteiner , N. , Radionov , V. F. , Bryazgin , N. N. and co-authors . 1999 . Snow depth on Arctic sea ice . J. Clim . 12 , 1814– 1829 .  

  26. Wiesmann , A. and Mätzler , C . 1999 . Microwave emission model of layered snowpacics . Remote Sens. Environ . 70 , 307 – 316 .  

comments powered by Disqus