Start Submission Become a Reviewer

Reading: On the use of Finite-Time Lyapunov Exponents and Vectors for direct assimilation of tracer i...

Download

A- A+
Alt. Display

Original Research Papers

On the use of Finite-Time Lyapunov Exponents and Vectors for direct assimilation of tracer images into ocean models

Authors:

Olivier Titaud ,

LEGI, CNRS & Université de Grenoble, BP53X, 38041 Grenoble Cedex; CERFACS, 42 avenue Gaspard Coriolis, 31057 Toulouse, Cedex 01, FR
X close

Jean-Michel Brankart,

LEGI, CNRS & Université de Grenoble, BP53X, 38041 Grenoble Cedex, FR
X close

Jacques Verron

LEGI, CNRS & Université de Grenoble, BP53X, 38041 Grenoble Cedex, FR
X close

Abstract

Satellite ocean tracer images, of sea surface temperature (SST) and ocean colour images, for example, show patterns like fronts and filaments that characterize the flow dynamics. These patterns can be described using Lagrangian tools such as Finite-Time Lyapunov Exponents (FTLE) or Finite-Time Lyapunov Vectors (FTLV). In recent years, several studies have investigated the possibility of directly assimilating structured data from satellite images into numerical models. In this paper, we exploit specific properties of FTLE and FTLV to define observation operators that can be used in a direct ocean tracer image assimilation scheme. In an idealized context, we show that high-resolution SST and ocean colour images can be exploited to correct velocity fields using FTLE or FTLV.

How to Cite: Titaud, O., Brankart, J.-M. and Verron, J., 2011. On the use of Finite-Time Lyapunov Exponents and Vectors for direct assimilation of tracer images into ocean models. Tellus A: Dynamic Meteorology and Oceanography, 63(5), pp.1038–1051. DOI: http://doi.org/10.1111/j.1600-0870.2011.00533.x
16
Citations
  Published on 01 Jan 2011
 Accepted on 21 Jun 2011            Submitted on 31 Jan 2011

References

  1. Abraham , E. R. and Bowen , M. M . 2002 . Chaotic stirring by a mesoscale surface-ocean flow . Chaos 12 ( 2 ), 373 – 381 . https://doi.org/10.1063/1.1481615 .  

  2. Artale , V. , Boffetta , G. , Celani , A. , Cencini , M. and Vulpiani , A . 1997 . Dispersion of passive tracers in closed basins: beyond the diffusion coefficient . Phys. Fluids 9 ( 11 ), 3162 – 3171 . https://doi.org/10.1063/1.869433 .  

  3. Aubert , G. and Kornprobst , P . 2006 . Mathematical problems in image processing. In: Applied Mathematical Sciences , 2nd Edition , Volume 147 (eds. Aubert , G. and Kornprobst , P. ). Springer , New York .  

  4. Aurell , E. , Boffetta , G. , Crisanti , A. , Paladin , G. and Vulpiani , A . 1997 . Predictability in the large: an extension of the concept of lyapunov exponent . J. Phys. A: Math. Gen . 30 ( 1 ), 1 – 26 . https://doi.org/10.1088/0305-4470/30/1/003 .  

  5. Beron-Vera , F. J . 2010 . Mixing by low-and high-resolution surface geostrophic currents . J. Geophys. Res . 115 ( C10027 ). https://doi.org/10.1029/2009JC006006 .  

  6. Beron-Vera , F. J. and Olascoaga , M. J . 2009 . An assessment of the importance of chaotic stirring and turbulent mixing on the West Florida shelf . J. Phys. Oceanogr . 39 ( 7 ), 1743 – 1755 . https://doi.org/10.1175/2009JP04046.1 .  

  7. Beron-Vera , F. J. , Brown , M. G. , Olascoaga , M. J. , Rypina , I. I. , Koyak , H. , and co-authors . 2008 . Zonal jets as transport barri-ers in planetary atmospheres. J. Atmos. Sci . 65 ( 10 ), 3316-3326. https://doi.org/10.1175/2008JA52579.1 .  

  8. Beron-Vera , F. J. , Olascoaga , M. J. and Goni , G. J . 2010 . Surface ocean mixing inferred from different multisatellite altimetry measurements . J. Phys. Oceanogr 40 ( 11 ), 2466 – 2480 . https://doi.org/10.1175/2010JP04458.1 .  

  9. Brasseur , P. and Verron , J . 2006 . The seek filter method for data assim-ilation in oceanography: a synthesis . Ocean Dyn . 56 ( 5-5 ), 650 – 661 . https://doi.org/10.1007/s10236-006-0080-3 .  

  10. Carme , S. , Pham , D.-T. and Verron , J . 2001 . Improving the singu-lar evolutive extended Kalman filter for strongly nonlinear models for use in ocean data assimilation . Inverse ProbL 17 ( 5 ), 1535 – 1559 . https://doi.org/10.1088/0266-5611/17/5/319 .  

  11. Carmillet , V , Branlcart , J.-M. , Brasseur , R , Drange , H. , Evensen , G. and co-authors . 2001 . A singular evolutive extended Kalman filter to assimilate ocean color data in a coupled physical-biochemical model of the north atlantic. Ocean Model . 3 , 167 - 192 .  

  12. Chan , T. F. and Shen , J . 2005 . Image Processing and Analysis , (eds. Chan , T. F. and Shen , J. ). Society for Industrial and Applied Mathe-matics (SIAM), Philadelphia , PA .  

  13. Corpetti , T. , Heas , R , Memin , E. and Papadalcis , N . 2009 . Pressure image assimilation for atmospheric motion estimation . Tellus 61A , 160 – 178 . https://doi.org/10.1111/j.1600-0870.2008.00370.x .  

  14. d’Ovidio , F. , Fernandez , V. , Hernandez-Garcia , E. and Lopez , C. 2004 . Mixing structures in the mediterranean sea from finite-size Lyapunov exponents . Geophys. Res. Lett . 31 ( L17203 ). https://doi.org/10.1029/2004GL020328 .  

  15. d’Ovidio , F. , Isern-Fontanet , J. , Lopez , C. , Hernandez-Garcia , E. and Garcia-Ladona , E. 2009a . Comparison between Eulerian di-agnostics and finite-size Lyapunov exponents computed from al-timetry in the Algerian basin . Deep-Sea Res . 51 ( 1 ), 15 – 31 . https://doi.org/10.1016/j.dsr.2008.07.014 .  

  16. d’Ovidio , F. , Taillandier , V. , Taupier-Letage , I. and Mortier , L. 2009b . Lagrangian validation of the mediterranean mean dynamic topogra-phy by extraction of tracer frontal structures . Mercator Ocean Quar-terly Newsletter 32 , 24 – 32 .  

  17. Gregg , W. W . 2008 . Assimilation of seawifs ocean chlorophyll data into a three-dimensional global ocean model . J. Mar SysL 69 , 205 – 225 .  

  18. Haller , G . 2001a . Distinguished material surfaces and coherent struc-tures in three-dimensional fluid flows . Physica D 149 ( 4 ), 248 – 277 . https://doi.org/10.1016/S0167-2789(00)00199-8 .  

  19. Haller , G . 2001b . Lagrangian structures and the rate of strain in a parti-tion of two-dimensional turbulence . Phys. Fluids 13 ( 11 ), 3365 – 3385 . https://doi.org/10.1063/1.1403336 .  

  20. Haller , G . 2002 . Lagrangian coherent structures from approximate ve-locity data . Phys. Fluids 14 ( 6 ), 1851 – 1861 . https://doi.org/10.1063/1.1477449 .  

  21. Haller , G . 2011 . A variational theory of hyperbolic Lagrangian coher-ent structures . Physica D: Nonlinear Phenomena 240 ( 7 ), 574 – 598 . https://doi.org/10.1016/j.physd.2010.11.010 .  

  22. Haller , G. and Yuan , G . 2000 . Lagrangian coherent structures and mixing in two-dimensional turbulence . Physica D: Nonlinear Phenomena 147 ( 3-4 ), 352 – 370 . https://doi.org/10.1016/S0167-2789(00)00142-1 .  

  23. Herlin , I. , Le Dimet , F.-X. , Huot , E. and Berroir , J.-P . 2004. Coupling models and data: which possibilities for remotely-sensed images. In: e-Environment: Progress and Challenge of Research on Computing Science , (eds. P. Prastacos , U. Cortes , J.-L. D. D. Leon and M. Murillo , Vol. 11 , Instituto Politecnico Nacional, Mexico , pp. 365 - 383 .  

  24. Horn , B. K. P. and Schunck , B. G . 1981 . Determining optical flow . Al 17 , 185 – 203 .  

  25. Kremeur , A.-S. , Levy , M ., Aumont , O. and Reverdin , G. 2009. Impact of the subtropical mode water biogeochemical properties on primary production in the North Atlantic: new insights from an idealized model study. J. Geophys. Res . 114 ( C07019 ). https://doi.org/10.1029/2008JC005161 .  

  26. Lapeyre , G . 2002 . Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence . Chaos 12 ( 3 ), 688 – 698 . https://doi.org/10.1063/1.1499395 .  

  27. Le Dimet , F.-X. and Talagrand , O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A , 97 - 110 .  

  28. Lehahn , Y ., d’Ovidio , F. , Levy , M. and Heifetz , E. 2007. tir-ring of the northeast atlantic spring bloom: a Lagrangian anal-ysis based on multisatellite data. J. Geophys. Res . 112 ( C08005 ). https://doi.org/10.1029/2006JC003927 .  

  29. Lekien , F. , Coulliette , C. , Mariano , A. J. , Ryan , E. H. , Shay , L. K. and co-authors . 2005 . Pollution release tied to invariant manifolds: a case study for the coast of Florida. Physica D: Nonlinear Phenomena 210 ( 1-2 ), 1-20. https://doi.org/10.1016/j.physd.2005.06.023 .  

  30. Levy , M. , Estubier , A. and Madec , G . 2001 . Choice of an advec-tion scheme for biogeochemical models . Geophys. Res. Lett . 28 , 3725 – 3728 .  

  31. Levy , M. , Iovino , D. , Masson , S. , Madec , G. , Klein , P. and co-authors . 2009 . Remote impacts of sub-mesoscale dynamics on new production. Mercator Ocean Quarterly Newsletter 13 , 13 - 17 .  

  32. Levy , M. , Klein , P. , Treguier , A.-M. , Iovino , D. , Madec , G. and co-authors . 2010 . Modifications of gyre circulation by sub-mesoscale physics. Ocean Modelling 34 , 1 - 15 . https://doi.org/10.1016/j.ocemod.2010.04.001 .  

  33. Luong , B. , Blum , J. and Verron , J . 1998 . A variational method for the resolution of a data assimilation problem in oceanography . Inverse ProbL 14 ( 4 ), 979 – 997 . https://doi.org/10.1088/0266-5611/14/4/014 .  

  34. Madec , G . 2008 . Nemo ocean engine, In: Note du Pole de modélisation 27 , Institut Pierre-Simon Laplace (IPSL), Paris, France.  

  35. Marr , D . 1982 . Vision: a computational investigation into the human representation and processing of visual information. In: Vision: A Computational Investigation into the Human Representation and Pro-cessing of Visual Information, (ed. Man , D. ). Henry Holt and Co. Inc. , New York, NY, USA.  

  36. Mathur , M. , Haller , G. , Peacock , T. , Ruppert-Felsot , J. E. and Swin-ney , H. L . 2007 . Uncovering the Lagrangian skeleton of turbu-lence . Phys. Rev. Lett . 98 ( 14 ), 144502 . https://doi.org/10.1103/PhysRevLett.98.144502 .  

  37. Olascoaga , M. J . 2010 . Isolation on the west Florida shelf with impli-cations for red tides and pollutant dispersal in the Gulf of Mexico . Nonlinear Process. Geophys . 17 ( 6 ), 685 – 696 . https://doi.org/10.5194/npg-17-685-2010 .  

  38. Olascoaga , M. J. , Beron-Vera , E J. , Brand , L. E. and Koyalc , H . 2008 . Tracing the early development of harmful algal blooms on the West Florida shelf with the aid of Lagrangian coherent structures . J. Geo-phys. Res . 113 ( C12014 ). https://doi.org/10.1029/2007JC004533 .  

  39. Olascoaga , M. J. , Rypina , I. I. , Brown , M. G. , Beron-Vera , E J. , Koyak , H. and co-authors . 2006 . Persistent transport barrier on the West Florida shelf. Geophys. Res. Lett . 33 ( L22603 ). https://doi.org/10.1029/2006GL027800 .  

  40. Ott , E . 1993 . Chaos in Dynamical Systems , (ed. Ott , E .). Cambridge University Press, New York , USA .  

  41. Ottino , J . 1989 . The Kinematics of Mixing: Stretching, Chaos, and Trans-port , (ed. Ottino , J. ). Cambridge University Press , Cambridge .  

  42. Peacock , T. and Dabiri , J . 2010 . Introduction to focus issue: Lagrangian coherent structures . Chaos 20 ( 1 ), 017501 . https://doi.org/10.1063/1.3278173 .  

  43. Pham , D. , Verron , J. and Roubaud , M . 1998 . Singular evolutive ex-tended Kalman filter with EOF initialization for data assimilation in oceanography . J. Mar SysL 16 ( 3-4 ), 323 – 340 .  

  44. Pierrehumbert , R. and Yang , H . 1993 . Global chaotic mixing on isen-tropic surfaces . J. Atmos. Sci . 50 ( 15 ), 2462 – 2480 . https://doi.org/10.1175/1520-0469(1993)050<2462:gcmois>2.0.00;2 .  

  45. Shadden , S. C. , Lekien , F. and Marsden , J. E . 2005 . Definition and prop-erties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows . Physica D: Nonlinear Phenomena 212 ( 3-4 ), 271 – 304 . https://doi.org/10.1016/j.physd.2005.10.007 .  

  46. Shadden , S. C. , Lekien , F. , Paduan , J. D. , Chavez , F. P. and Marsden , J. E . 2009 . The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay . Deep-Sea Res . 56 ( 3-5 ), 161 – 172 . https://doi.org/10.1016/j.dsr2.2008.08.008 .  

  47. Titaud , O. , Vidard , A. , Souopgui , I. and Le Dimet , F.-X . 2010 . Assim-ilation of image sequences in numerical models . Tellus 62A , 30 – 47 . https://doi.org/10.1111/j.1600-0870.2009.00416.x .  

  48. Wiggins , S . 1992 . Chaotic transport in dynamical systems , In: Interdis-ciplinaty Applied Mathematics , Volume 2 (ed . Wiggins, S.). Springer-Verlag , Berlin .  

comments powered by Disqus