Start Submission Become a Reviewer

Reading: The changing atmospheric water cycle in Polar Regions in a warmer climate

Download

A- A+
Alt. Display

Original Research Papers

The changing atmospheric water cycle in Polar Regions in a warmer climate

Authors:

Lennart Bengtsson ,

NERC Centre for Earth Observation (NCEO), University of Reading, Whiteknights, PO Box 238, Reading, RG6 6AL, UK; International Space Science Institute (ISSI), Hallerstrasse 6, CH-3012 Bern, CH
X close

Kevin I. Hodges,

NERC Centre for Earth Observation (NCEO), University of Reading, Whiteknights, PO Box 238, Reading, RG6 6AL, GB
X close

Symeon Koumoutsaris,

International Space Science Institute (ISSI), Hallerstrasse 6, CH-3012 Bern, CH
X close

Matthias Zahn,

NERC Centre for Earth Observation (NCEO), University of Reading, Whiteknights, PO Box 238, Reading, RG6 6AL, GB
X close

Noel Keenlyside

Leibniz Institute of Marine Sciences, IFM-GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, DE
X close

Abstract

We have examined the atmospheric water cycle of both Polar Regions, polewards of 60◦N and 60◦S, using the ERAInterim reanalysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario.

The annual precipitation in ERA-Interim amounts to ∼17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is ∼8000 km3 but ∼3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic.

The variability of themodel is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20- and 30-year records being generally too short to identify robust trends in the hydrological cycle.

In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22%, respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius—Clapeyron relation. There is a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year.

There is a small imbalance of some 4–6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact that the transport is calculated from instantaneous six hourly data while precipitation and evaporation is accumulated over a 6-h period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.

How to Cite: Bengtsson, L., Hodges, K.I., Koumoutsaris, S., Zahn, M. and Keenlyside, N., 2011. The changing atmospheric water cycle in Polar Regions in a warmer climate. Tellus A: Dynamic Meteorology and Oceanography, 63(5), pp.907–920. DOI: http://doi.org/10.1111/j.1600-0870.2011.00534.x
2
Views
54
Citations
  Published on 01 Jan 2011
 Accepted on 20 Jun 2011            Submitted on 5 Jan 2011

References

  1. Bengtsson , L. , Hagemann , S. and Hodges , K. I . 2004 . Can climate trends be calculated from reanalysis data? JGR-Atmos . 109 , D11111 , https://doi.org/10.1029/2004JD004536 .  

  2. Bengtsson , L. , Hodges , K. I. , and Roeckner , E. 2006. Storm Tracks and Climate Change. J. Climate V19 , 3518-354 3 .  

  3. Bengtsson , L. , Hodges , K. I. , Esch , M. , Keenlyside , N. , Kornblueh , L. , and co-authors . 2007 . How may tropical cyclones change in a warmer climate? Tellus V59A , 539 - 561 .  

  4. Bengtsson , L. , Hodges , K. I. and Keenlyside , N . 2009 . Will Extratrop-ical Storms Intensify in a Warmer Climate? J. Climate 22 , 2276 – 2301 .  

  5. Bengtsson , L. , Koumoutsaris S. and Hodges , K . 2011 . Large-scale sur-face mass balance of ice sheets from comprehensive atmospheric model. Surv. Geophys . in press, https://doi.org/10.1007/s10712-011-9120-8 .  

  6. Bromwich , D. H. , Wang , S.-H. and Monaghan , A. J . 2002 . ERA-40 representation of the Arctic atmospheric moisture budget . In ERA-40 Project Report Series , #3. ECMWF Workshop on Reanalysis , 287 – 298 .  

  7. Bromwich , D. H. , Fogt , R. L. , Hodges , K. I. and Walsh , J. E . 2007 . A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res . 112 , https://doi.org/10.1029/2006JD007859 .  

  8. Bromwich , D. H. and Wang , S-H . 2008 . A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulations based upon ERA-40 . Dyn. Atmos. Oceans 44 , 213 – 243 .  

  9. Catto , J. L. , Shaffrey , L. C. and Hodges , K. J. 2010. N orthern Hemisphere Extratropical Cyclones in a Warming Climate in the HiGEM High Resolution Climate Model. J. Climate , https://doi.org/10.1175/2011JCLI4181.1 .  

  10. Cullather , R. I. , Bromwich , D. H. and Serreze , M. C . 2000 . The atmo-spheric hydrologic cycle over the Arctic basin from reanalyses. Part I. comparison with observations and previous studies . J. Climate 13 , 923 – 937 .  

  11. Dee , D. P. and Uppala , S . 2009 . Variational bias correction of satellite radiance data in the ERA-Interim reanalysis . Q. J. Royal Met. Soc . 135 , 1830 – 1841 .  

  12. Dee , D. P. , Uppala , S. M. , Simmons , A. J. , Berrisford , P. , Poli , P. and co-authors . 2011 . The ERA-Interim reanalysis: configuration and per-formance of the data assimilation system. Quart. J. R. MeteoroL Soc . 137 , 553 - 597 .  

  13. Genthon , C. and Krinner , G . 1998 . Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts . J. Climate 11 , 1703 – 1716 .  

  14. Giovinetto , M. B. , Bromwich , D. H. and Wendler , G . 1992 . Atmospheric net transport of water vapor and latent heat across 70S . J. Geophys. Res . 97 , 917 – 930 .  

  15. Giovinetto , M. B. , Yamazaki , K. , Wendler , G. and Bromwich , D. H . 1997 . Atmospheric net transport of water vapor and latent heat across 60°S . J. Geophys. Res . 102 ( D10 ), 11171 – 11179 .  

  16. Held , I. M. and Soden , B. J . 2006 . Robust responses of the hydrological cycle to global warming . J. Climate 19 , 5686 – 5699 .  

  17. Hodges , K. I. , Hoskins , B. J. , Boyle , J. and Thorncroft , C . 2003 . A com-parison of recent reanalysis datasets using objective feature track-ing: storm tracks and tropical easterly waves. Mon . Wea. Re v . 131 , 2012 – 2037 .  

  18. Hodges , K. I. , Hoskins , B. J. , Boyle , J. and Thorncroft , C . 2004 . Corri-gendum: a comparison of recent reanalysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon . Wea. Re v . 132 , 1325 – 1327 .  

  19. Hoskins , B. J. and Hodges , K. I . 2005 . A new perspective on Sourthern Hemisphere storm tracks . J. Climate 18 , 4108 – 4129 .  

  20. Hodges , K. I. , Lee , R. W. and Bengtsson , L . 2011 . Compari-son of Extra-Tropical Cyclones in Recent Re-analyses; ERA-NTERIM, NASA-MERRA, NCEP-CFSR and JRA25. J. Climate , https://doi.org/10.1175/2011JCL14097.1 .  

  21. Inatsu , M. and Hoskins , B. J . 2004 : The zonal asymmetry of the Southern Hemisphere winter storm track . J. Climate 17 , 4882 – 4892 .  

  22. Jalcobson , E. and Vihma , T . 2010 , Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis . Int. J. Climatol . 30 , 2175 – 2194 . https://doi.org/10.1002/joc.2039 .  

  23. Kattsov , V. M. , Walsh , J. E. , Chapman , W. L. , Govorkova , V. A. , Pavlova , T. V. , and co-authors . 2007 . Simulation and projection of arctic fresh-water budget components by the IPCC AR4 global climate models. J. Hydrometeor 8 , 571 - 589 .  

  24. Lettau , B . 1969 . The transport of moisture into the Antarctic interior . Tellus 21 , 331 – 340 .  

  25. Nalcicenovic , N. , Alcamo , J. , Davies , G. , DeVries , B. , Fenhann , J. and co-authors . 2000 . Special Report on Emissions Scenarios . Cambridge University Press , 599 pp .  

  26. Nicholas , J. P. and Bromwich , D. H . 2011 . Precipitation changes in high southern latitudes from global reanalyses: a cautionary tale. Surv. Geophys ., in press , https://doi.org/10.1007/s10712-011-9114-6 .  

  27. Pierrehumbert , R. T. , Brogniez , H. and Roca , R . 2007 . On the relative humidity of the Earth’s atmosphere. In: The Global Circulation of the Atmosphere , (eds. Schneider , T. and Sobel , A. H. ), Princeton University Press , Princeton, NJ , 143 - 185 .  

  28. Rawlins , M. A. , Steele , M. , Holland , M. M. , Adam , J. C. , Cherry , J. E. and co-authors . 2010. Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations. J. Climate 23 , 5715-573 7 .  

  29. Rex , D. F . 1950 . Blocking action in the middle troposphere and its effect upon regional climate. II. The climatology of blocking action . Tellus 2 , 275 – 301 .  

  30. Roecicner , E. , Brokopf , R. , Esch , M. , Giorgetta , M. , Hagemann , S. , and co-authors . 2006 . Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model , J. Climate 19 , 3771 - 3791 .  

  31. Rogers , A. N. , Bromwich , D. H. , Sinclair , E. N. and Cullather , R. I . 2001 . The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part II: interannual variability . J. Climate 14 , 2414 – 2429 .  

  32. Saha , S. , Moorthi , S. , Pan , H.-L. , Wang , J. , Nadiga , S. and co-authors . 2010 . The NCEP climate forecast system reanalyses , Bull. Amer Met. Soc . 91 , 1015 - 1057 .  

  33. Serreze , M. C. , Bromwich , D. H. , Clark , M. P. , Etringer , A. J. , Zhang , T. and co-authors . 2003 . The large-scale hydro-climatology of the terrestrial Arctic drainage. J. Geophys. Res . 108 , 8160 , https://doi.org/10.1029/2001JDO00919 .  

  34. Serreze , M. C. , Barrett , A. R , Slater , A. G. , Woodgate , R. A. , Aagaard , K. and co-authors . 2006 . The large-scale freshwater cycle of the Arctic. J. Geophys. Res . 111 , C11010 , https://doi.org/10.1029/2005JC003424 .  

  35. Simmons , A. , Uppala , S. , Dee , D. and Kobayashi , S . 2007 . ERA-Interim: New ECMWF reanalysis products from 1989 onwards . ECMWF Newsletter No . 110 , 25 – 25 .  

  36. Takahashi , K . 2009 . Radiative constraints on the hydrological cycle in an idealized radiative—convective equilibrium model. J. Atmos. Sc i 66 , 77 – 91 .  

  37. Tietäväinen , H. and Vihma , T . 2008 . Atmospheric moisture budget over Antarctica and the Southern Ocean based on the ERA-40 reanalysis . Int. J. Climatol . 28 , 1977 – 1995 .  

  38. Tyrlis , E. and Hoskins , B. J . 2008 . Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sc i . 65 , 1638 – 1652 .  

  39. Wang , X. L. , Swail , V. R. and Zwiers , F. W . 2006 . Climatology and changes of extratropical cyclone activity: comparison of ERA-40 with NCEP-NCAR reanalysis for 1958-2001 . J. Clim . 19 , 3145 – 3166 .  

comments powered by Disqus