Start Submission Become a Reviewer

Reading: Application of conditional non-linear optimal perturbations to tropical cyclone adaptive obs...

Download

A- A+
Alt. Display

Original Research Papers

Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using theWeather Research Forecasting (WRF) model

Authors:

Hongli Wang ,

National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado, 80307, US
About Hongli

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

X close

Mu Mu,

Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, CN
X close

Xiang-Yu Huang

National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado, 80307, US
About Xiang-Yu

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

X close

Abstract

Conditional non-linear optimal perturbation (CNOP), which is a natural extension of the linear singular vector into the non-linear regime, has been suggested to identify data-sensitive regions in the adaptive observation strategy. CNOP is the global maximum of a cost function, whereas, local CNOP is the local maximum of the cost function if the local maximum exists. The potential application of CNOPs to tropical cyclone adaptive observation is researched. The CNOPs and the first singular vector (FSV) are numerically obtained by a spectral projected gradient algorithm with the Weather Research Forecasting (WRF) model. This paper examines two tropical cyclone cases, a fast straight moving typhoon Matsa (2005) and a slow moving recurving typhoon Shanshan (2006). The CNOPs and FSVs are obtained using the norms of background error at initial time and total dry energy at final time with a 36-h optimization time interval. The spatial structures of CNOPs, their energies, non-linear evolutions and impacts on track simulations are compared with those of the FSVs. The results show that both the CNOPs and the FSVs are localized, and evolve into the verification area at the final time with the upscale growth of perturbations. However, the CNOPs are different from the FSVs in spatial patterns, wind maximum distribution, growth rate of energy and impact on track simulation. Compared to FSV, CNOP and local CNOP have greater impact on the forecast in the verification region at the final time in terms of total energy, and have larger, at least similar impact on track simulation too. This indicates the CNOP method with constraint of the norm of background error at initial time and total energy norm at final time is a reasonable candidate in tropical cyclone adaptive observation. Therefore, both CNOP and local CNOP are suggested to be considered in tropical cyclone adaptive observation.

How to Cite: Wang, H., Mu, M. and Huang, X.-Y., 2011. Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using theWeather Research Forecasting (WRF) model. Tellus A: Dynamic Meteorology and Oceanography, 63(5), pp.939–957. DOI: http://doi.org/10.1111/j.1600-0870.2011.00536.x
1
Views
16
Citations
  Published on 01 Jan 2011
 Accepted on 28 Jun 2011            Submitted on 19 Apr 2011

References

  1. Aberson , S. D . 2003 . Targeted observations to improve operational trop-ical cyclone track. Mon . Weather Re v . 131 , 1613 – 1628 .  

  2. Aberson , S. D. and Etherton , B. J . 2006 . Targeting and data assimila-tion studies during Hurricane Humberto (2001). J. Atmos. Sc i . 63 , 175 – 186 .  

  3. Barker , D. M. , Huang , W. , Guo , Y-R. , Bourgeois , A. J. and Xiao , Q. N. 2004. A three-dimensional variational data assimilation sys-tem for MM5: implementation and initial results. Mon. Weather Rev. 132 , 897 - 914 .  

  4. Barker , D. M. , Lee , M. S. , Guo , Y.-R. , Huang , W. , Rizvi , S. and co-authors . 2005 . WRF-Var—a unified 3/4D-Var variational data assim-ilation system for WRF. In: Proceedings of the Sixth WRFI15th MM5 Users’ Workshop , NCAR, Boulder, CO, 17 pp .  

  5. Birgin , E. G. , Martinez , J. E. and Marcos , R. 2001. Algorithm 813: SPG—software for convex-constrained optimization. ACM Trans. Math. Softw 27 , 340 - 349 .  

  6. Bishop , C. H. and Toth , Z . 1999 . Ensemble transformation and adaptive observations. J. Atmos. Sc i . 56 , 1748 – 1765 .  

  7. Bishop , C. H. , Etherton , B. J. and Majumdar , S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon. Weather Rev. 129 , 430 - 436 .  

  8. Cardinali , C. , Buizza , R. , Kelly , G. , Shapiro , M. and Thepaut , J.-N . 2007 . The value of observations. Part DI: influence of weather regimes on targeting . Q. J. R. MeteoroL Soc . 133 , 1833 – 1842 .  

  9. Duan , W. S. , Mu , M. and Wang , B . 2004 . Conditional nonlinear op-timal perturbations as the optimal precursors for El Nino-Southern Oscillation events . J. Geophys. Res . 109 , 1029 – 1041 .  

  10. Ehrendorfer , M. and Errico , R. M . 1995 . Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sc i . 52 , 3475 – 3500 .  

  11. Ehrendorfer , M. , Errico , R. M. and Raeder , K. D . 1999 . Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sc i . 56 , 1627 – 1648 .  

  12. Errico , R. M . 1985 . Spectra computed from a limited area grid. Mon . Weather Re v . 113 , 1554 – 1562 .  

  13. Grell , G. A. , Dudhia , J. and Stauffer , D. R . 1995 . A description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCARTTN-398±STR, 122 pp .  

  14. Gustafsson , N. and Huang , X.-Y . 1996 . Sensitivity experiments with the spectral HIRLAM and its adjoint . Tellus 48A , 501 – 517 .  

  15. Hamill , T. M. and Snyder , C . 2002 . Using improved background error covariances from an ensemble Kalman filter for adaptive observations. Mon . Weather Re v . 130 , 1552 – 1572 .  

  16. Hoover , B. T. and Morgan , M. C . 2010 . Validation of a tropical cyclone steering response function with a barotropic adjoint model. J. Atmos. Sc i . 67 , 1806 – 1816 .  

  17. Hsiao , L.-E , Liou , C.-S. , Yeh , T.-C. , Guo , Y.-R. , Chen , D.-S. and co-authors . 2010. A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Weather Rev . 138 , 3298-331 5 .  

  18. Huang , X.-Y. , Xiao , Q. N. , Barker , D. M. , Zhang , X. , Michalakes , J. and co-authors . 2009 . Four-dimensional variational data assimilation for WRF: formulation and preliminary results. Mon. Weather Rev . 137 , 299 - 314 .  

  19. Jiang , Z. N. and Mu , M . 2009 . A comparison study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction. Adv . Atmos. Sc i . 26 , 465 – 470 .  

  20. Langland R. H . 2005 . Issues in targeted observing . Q. J. R. MeteoroL Soc . 131 , 3409 – 3425 .  

  21. Langland , R. H. and Rohaly , G. D . 1996 . Analysis error and adjoint sensi-tivity in prediction of a North Atlantic frontal cyclone. In: Proceedings of the 11th Conf on Numerical Weather Prediction , Preprints, Amer. Meteor. Soc. 150 - 152 .  

  22. Lorenz , E. N. and Emanuel , K. A . 1998 . Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sc i . 55 , 399 – 414 .  

  23. Majumdar , S. J. , Aberson , S. D. , Bishop , C. H. , Buizza , R. , Peng , M. S. and co-authors. 2006. A comparison of adaptive observing guidance for Atlantic tropical cyclones. Mon. Weather Rev. 134 , 2354 - 2372.  

  24. Montani , A. , Thorpe , A. J. , Buizza , R. and Unden , P. 2006. Forecast skill of the ECMWF model using targeted observations during FASTEX. Q. J. R. MeteoroL Soc. 125 , 3219 - 3240 .  

  25. Mu , M. and Duan , W. S . 2003 . A new approach to studying ENSO predictability: conditional nonlinear optimal perturbation . Chin. Sci. Bull . 48 , 1045 – 1047 .  

  26. Mu , M. and Zhang , Z. Y . 2006 . Conditional nonlinear optimal pertur-bations of a two-dimensional quasigeostrophic model. J. Atmos. Sc i . 63 , 1587 – 1604 .  

  27. Mu , M. , Wang , H. L. and Zhou , F. F . 2007 . Application of conditional op-timal perturbation to adaptive observation: preliminary results. Chin. J. Atmos. Sc i . 31 , 1102 – 1112 .  

  28. Mu , M. , Zhou , F . E and Wang, H. L. 2009. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation . Mon. Weather Rev . 137 , 1623– 1639 .  

  29. Palmer , T. N. , Gelaro , R. , Barameijer , J. and Buizza , R . 1998 . Sin-gular vectors, metrics, and adaptive observations. J. Atmos. Sc i . 55 , 633 – 653 .  

  30. Parrish , D. F. and Derber , J. C. 1992. The National Meteorological Cen-ter’s spectral statistical-interpolation analysis system . Mon. Weather Rev . 120 , 1747– 1763 .  

  31. Pu , Z. X. and Kalnay , E . 1999 . Targeting observations with the quasi-linear inverse and adjoint NCEP global models: performance during FASTEX . Q. J. R. MeteoroL Soc . 125 , 3329 – 3337 .  

  32. Qin , Q. H. and Mu , M . 2011 . A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon . Weather Re v . 139 , 2218 – 2232 .  

  33. Rabier , F. , Klinker , E. , Courtier , P. and Hollingsworth , A . 1996 . Sensi-tivity of forecast errors to initial conditions . Q. J. R. MeteoroL Soc . 122 , 121 – 150 .  

  34. Reynolds , C. A. , Peng , M. S. , Majumdar , S. J. , Aberson , S. D. , Bishop , C. H. and co-authors. 2007. Interpretation of adaptive observing guidance for Atlantic tropical cyclones. Mon. Weather Rev. 135 , 4006 - 4029 .  

  35. Skamarock , W. C. , Klemp , J. B. , Dudhia , J. , Gill , D. O. , Barker , D. M. , and co-authors. 2008. A description of the advanced research WRF version 3. NCAR Tech. Note TN-475±STR , 113 pp .  

  36. Wang , H. L ., Sun J. Z ., Guo Y.-R. and Huang X.-Y. 2011. Radar re-flectivity assimilation with the four-dimensional variational system of the Weather Research and Forecast Model. In: Proceedings of the 91st American Meteorological Society Annual Meeting. Seattle, WA. Available at: http://ams.confex.com/ams/91Annua1/webprogram/Manuscript/Paper185272/4DVAR_RF_AMS2011_Wang.pdf. Accessed on 23-27 January 2011.  

  37. Wu , C. C. , Chen , J. H. and Lin , P. H . 2007a . The impact of drop-windsonde data on typhoon track forecasts in DOTSTAR . Weather Forecast . 22 , 1157 – 1176 .  

  38. Wu , C. C. , Chen , J. H. , Lin , P. H. and Chou , K. H. 2007b. Targeted ob-servations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci. 64 , 2611 - 2626 .  

  39. Wu , C. C. , Chen , J. H. , Majumdar , S. J. , Peng , M. S. , Reynolds , C. A. and co-authors. 2009a. Intercomparison of targeted observation guidance for tropical cyclones in the northwestern Pacific. Mon. Weather Rev. 137 , 2471 - 2492 .  

  40. Wu , C. C. , Chen , S.-G. , Chen , J. H. , Chou , K.-H. and Lin , P.-H. 2009b. Interaction of typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential voracity perspectives. Mon. Weather Rev. 137 , 852 - 862 .  

  41. Xiao , Q. N. , Kuo , Y.-H. , Ma , Z. Z. , Huang , W. , Huang , X.-Y. , and co-authors . 2008. Development of the WRF adjoint modeling system and its application to the investigation of the May 2004 McMurdo Antarctica severe wind event. Mon. Weather Rev . 136 , 3696-371 3 .  

  42. Zhang , M. , Zhang F. Q. , Huang X.-Y. and Zhang X . 2010 . Inter-comparison of an ensemble Kalman filter with three-and four-dimensional variational data assimilation methods in a limited-area model over the month ofJune 2003. Mon . Weather Re v . 139 , 566 – 572 .  

  43. Zhou F. F. and Mu M . 2011 . The impact of verification area design on tropical cyclone targeted observations based on the CNOP method. Adv. Atmos. Sci . In press.  

  44. Zou , X. L. , Vandenberghe , E , Pondeca , M. and Kuo Y.-H . 1997 . Introduction to adjoint techniques and the MM5 adjoint model-ing system. NCAR Technical Note, NCAR/TN2435 STR, 110 pp, [Available from NCAR, P.O. Box 3000, Boulder, CO 80307-3000].  

comments powered by Disqus