Start Submission Become a Reviewer

Reading: The role of large-scale spatial patterns in the chaotic amplification of perturbations in a ...

Download

A- A+
Alt. Display

Original Research Papers

The role of large-scale spatial patterns in the chaotic amplification of perturbations in a Lorenz’96 model

Authors:

S. Herrera ,

Instituto de Física de Cantabria (IFCA), CSIC-UC, 39005 Santander, ES
X close

D. Pazó,

Instituto de Física de Cantabria (IFCA), CSIC-UC, 39005 Santander, ES
X close

J. Fernández,

Department of Applied Mathematics and Computer Science, Universidad de Cantabria, 39005 Santander, ES
X close

M. A. Rodríguez

Instituto de Física de Cantabria (IFCA), CSIC-UC, 39005 Santander, ES
X close

Abstract

The preparation of perturbed initial conditions to initialize an ensemble of numerical weather forecasts is a crucial task in current ensemble prediction systems (EPSs). Perturbations are added in the places where they are expected to grow faster, in order to provide an envelope of uncertainty along with the deterministic forecast. This work analyses the influence of large-scale spatial patterns on the growth of small perturbations. Therefore, we compare Lyapunov vector (LV) definitions, used in the initialization of state-of-the-art EPSs, with the so-called characteristic LVs. We test the dynamical behaviour of these LVs in the two-scale Lorenz’96 system. We find that the commonly used definitions of LVs include non-intrinsic and spurious effects due to their mutual orthogonality. We also find that the spatial locations where the small-scale perturbations are growing are ‘quantized’ by the large-scale pattern. This ‘quantization’ enhances the artificial disposition of the LVs, which is only avoided using the characteristic LVs, an unambiguous basis which may also be of great use in realistic models for assessing or initializing EPSs.

How to Cite: Herrera, S., Pazó, D., Fernández, J. and Rodríguez, M.A., 2011. The role of large-scale spatial patterns in the chaotic amplification of perturbations in a Lorenz’96 model. Tellus A: Dynamic Meteorology and Oceanography, 63(5), pp.978–990. DOI: http://doi.org/10.1111/j.1600-0870.2011.00545.x
1
Views
1
Downloads
  Published on 01 Jan 2011
 Accepted on 27 Jun 2011            Submitted on 18 Jan 2011

References

  1. Annan , J . 2004 . On the orthogonality of bred vectors. Mon . Wea. Re v . 132 , 843 – 849 .  

  2. Back , S. J. , Hunt , B. R. , Kalnay , E. , Ott , E. and Szunyogh , I . 2006 . Local ensemble Kalman filtering in the presence of model bias . Tel/us 58A , 293 – 306 .  

  3. Benettin , G. , Galgani , L. , Giorgilli , A. and Strelcyn , J.-M . 1980 . Lya-punov characteristic exponents for smooth dynamical systems and for Hamiltonian systems . Meccanica 15 , 9 .  

  4. Bretherton , C. S. , Widmann , M. , Dymnilcov , V. R , Wallace , J. M. and Blade , I . 1999 . The effective number of spatial degrees of freedom of a time-varying field . J. Climate 12 , 1990 – 2009 .  

  5. Danforth , C. M. and Kalnay , E . 2008 . Using singular value decomposi-tion to parameterize state-dependent model errors. J. Atmos. Sc i . 65 , 1467 – 1478 .  

  6. Egolf , D. A. , Melnikov , I. V. , Pesch , W. and Ecke , R. E . 2000 . Mecha-nisms of extensive chaos in Rayleigh-Benard convection . Nature 404 , 733 – 736 .  

  7. Epstein , E . 1969 . Stochastic dynamic prediction . Tellus 21A , 739 – 759 .  

  8. Fertig , E. J. , Harlim , J. and Hunt , B. R . 2007 . A comparative study of 4D-VAR and a 4D ensemble Kalman filter: perfect model simulations with Lorenz-96 . Tellus 59A , 96 – 100 .  

  9. Gutierrez , J. M. , Primo , C. , Rodriguez , M. A. and Fernandez , J . 2008 . Spatiotemporal characterization of ensemble prediction systems - the mean-variance of the logarithms (MVL) diagram. Nonlin. Pro-cesses Geophys . 15 ( 1 ), 109-114. URL: http://www.nonlin-processes-geophys.net/15/109/2008.  

  10. Hallerberg , S. , PazO , D. , Lopez , J. M. and Rodriguez , M. A . 2010 . Log-arithmic bred vectors in spatiotemporal chaos: structure and growth . Phys. Re v . E 81 , 066204 .  

  11. Herrera , S. , Fernandez , J. , Rodriguez , M. A. and Gutierrez , J . 2010 . Spatio-temporal error growth in the multi-scale Lorenz96 model . Non-lin. Processes Geophys . 17 , 329 – 337 .  

  12. Legras , B. and Vautard , R . 1996 . A guide to liapunov vectors. In: Proc. Seminar on Predictability Vol. I (ed. T. Palmer . ECWF Seminar, ECMWF, Reading , UK , pp. 135 - 146.  

  13. Leith , C. E . 1974 . Theoretical skills of Monte Carlo forecasts. Mon . Wea. Re v . 102 , 409 – 418 .  

  14. Lopez , J. M. , Primo , C. , Rodriguez , M. A. and Szendro , I . 2004 . Scaling properties of growing noninfinitessimal perturbations in space-time chaos . Phys. Re v . E 70 , 056224 .  

  15. Lorenz , E. N . 1996 . Predictability, a problem partly solved. In Proceed-ings of ECMWF seminar on Predictability , ECMWF, Reading, UK, pp. 1 - 19 .  

  16. Lorenz , E. N . 2006 . Regimes in simple systems. J. Atmos. Sc i . 63 , 2056 – 2073 .  

  17. Lorenz , E. N. and Emanuel , K . 1998 . Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sc i . 55 , 399 – 414 .  

  18. Majda , A. J. and Wang , X . 2006 . Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (eds Majda , A. J. and Wang , X. ). Cambridge University Press, Cambridge , UK .  

  19. Oczkowki , M. , Szunyogh , I. and Patil , D. J . 2005 . Mechanisms for the development of locally low-dimensional atmospheric dynamics. J. Atmos. Sc i . 62 , 1135 – 1156 .  

  20. Orrell , D . 2002 . Role of the metric in forecast error growth: how chaotic is the weather? . Tellus 54A , 350 – 362 .  

  21. Orrell , D . 2003 . Model error and predictability over different timescales in the Lorenz’ 96 systems. J. Atmos. Sc i . 60 , 2219 .  

  22. Orrell , D . 2005 . Ensemble forecasting in a system with model error. J. Atmos. Sc i . 62 , 1652 – 1659 .  

  23. Palmer , T. N. , Molteni , F. , Mureau , R. , Buizza , R. , Chapelet , P. and co-authors . 1993 . Ensemble prediction. In: Proc. Seminar on Validation of Models Over Europe: vol. I (ed. T. N. Palmer ), ECMWF Seminar, ECMWF, Reading , UK .  

  24. Patil , D. J. , Hunt , B. R. , Kalnay , E. , Yorke , J. A. and Ott , E . 2001 . Local low dimensionality of atmospheric dynamics . Phys. Rev. Lett . 86 , 5878 – 5881 .  

  25. Raze , D. , LOpez , J. M. and Rodriguez , M. A . 2009 . Exponen-tial localization of singular vectors in spatiotemporal chaos . Phys. Rev. E 79 ( 3 ), 036202 . https://doi.org/10.1103/PhysRevE.79.036202 . http://link.aps.orglabstract/PREIv79/e036202 .  

  26. Raze , D. , Rodriguez , M. A. and LOpez , J. M . 2010 . Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors . Tellus 62A , 10 – 23 .  

  27. Raze , D. , Szendro , I. G. , LOpez , J. M. and Rodriguez , M. A . 2008 . Structure of characteristic Lyapunov vectors in spatiotemporal chaos . Phys. Rev. E 78 ( 1 ), 016209 . https://doi.org/10.1103/PhysRevE.78.016209 . http://link.aps.org/abstract/PRE/v78/e016209 .  

  28. Pikovsky , A. and Politi , A . 1998 . Dynamic localization of Lya-punov vectors in spacetime chaos . Nonlinearity 11 ( 4 ), 1049 – 1062 . https://doi.org/10.1088/0951-7715/11/4/016 .  

  29. Richman , M. B . 1986 . Rotation of principal components . J. Climatol . 6 , 293 – 335 .  

  30. Romero-Bastida , M. , PazO , D. , Lopez , J. M. and Rodriguez , M. A . 2010 . Structure of characteristic Lyapunov vectors in an-harmonic Hamiltonian lattices . Phys. Rev. E 82 ( 3 ), 036205 . https://doi.org/10.1103/PhysRevE.82.036205 .  

  31. Samelson , R. and Wolfe , C . 2003 . A nonlinear baroclinic wave-mean oscillation with multiple normal mode instabilities . J. Atmos. Sci . 60 ( 9 ), 1186 – 1199 .  

  32. Schuster , H. G . 1988 . Deterministic Chaos: An Introduction Schuster, H . G. VCH , Germany .  

  33. Szendro , I. G. , Raze , D. , Rodriguez , M. A. and LOpez , J. M . 2007 . Spa-tiotemporal structure of Lyapunov vectors in chaotic coupled-map lat-tices . Phys. Rev. E 76 ( 2 ), 025202 . https://doi.org/10.1103/PhysRevE.76.025202 . http://link.aps.orglabstract/PRE/v76/e025202  

  34. Toth , Z. and Kalnay , E . 1993 . Ensemble forecasting at NMC: the generation of perturbations . Bull. Amer. Meteor Soc . 74 , 2317 – 2330 .  

  35. Willcs , D. S . 2005 . Effects of stochastic parameterization in the Lorenz96 system . Quart. J. Roy. Meteor Soc . 131 , 389 – 407 .  

  36. Wolfe , C. L. and Samelson , R. M . 2007 . An efficient method for recover-ing Lyapunov vectors from singular vectors . Tellus 59A ( 3 ), 355 – 366 . https://doi.org/10.1111/j.1600-0870.2007.00234.x .  

comments powered by Disqus